2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
12 (* $Id: orderings.ml 9869 2009-06-11 22:52:38Z denes $ *)
14 type eq_sig_type = Eq | EqInd_l | EqInd_r | Refl
16 let eqsig = ref (fun _ -> assert false);;
17 let set_sig f = eqsig:= f;;
18 let get_sig = fun x -> !eqsig x;;
20 let default_sig = function
22 let uri = NUri.uri_of_string "cic:/matita/basics/logic/eq.ind" in
23 let ref = NReference.reference_of_spec uri (NReference.Ind(true,0,2)) in
26 let uri = NUri.uri_of_string "cic:/matita/basics/logic/rewrite_l.con" in
27 let ref = NReference.reference_of_spec uri (NReference.Def(1)) in
30 let uri = NUri.uri_of_string "cic:/matita/basics/logic/rewrite_r.con" in
31 let ref = NReference.reference_of_spec uri (NReference.Def(3)) in
34 let uri = NUri.uri_of_string "cic:/matita/basics/logic/eq.ind" in
35 let ref = NReference.reference_of_spec uri (NReference.Con(0,1,2)) in
38 let set_default_sig () =
39 (*prerr_endline "setting default sig";*)
42 (* let debug c r = prerr_endline r; c *)
45 let eqP() = debug (!eqsig Eq) "eq" ;;
46 let eq_ind() = debug (!eqsig EqInd_l) "eq_ind" ;;
47 let eq_ind_r() = debug (!eqsig EqInd_r) "eq_ind_r";;
48 let eq_refl() = debug (!eqsig Refl) "refl";;
51 let extract status lift vl t =
52 let rec pos i = function
53 | [] -> raise Not_found
54 | j :: tl when j <> i -> 1+ pos i tl
57 let vl_len = List.length vl in
58 let rec extract = function
59 | Terms.Leaf x -> NCicSubstitution.lift status (vl_len+lift) x
61 (try NCic.Rel (pos j vl) with Not_found -> NCic.Implicit `Term)
62 | Terms.Node l -> NCic.Appl (List.map extract l)
68 let mk_predicate status hole_type amount ft p1 vl =
76 let module NCicBlob = NCicBlob.NCicBlob in
77 let module Pp = Pp.Pp(NCicBlob) in
78 prerr_endline ("term: " ^ Pp.pp_foterm ft);
79 prerr_endline ("path: " ^ String.concat ","
80 (List.map string_of_int p1));
81 prerr_endline ("leading to: " ^ Pp.pp_foterm t);
87 if i = n then aux t tl
88 else extract status amount (0::vl) t)
93 NCic.Lambda("x", hole_type, aux ft (List.rev p1))
97 let uri = NUri.uri_of_string "cic:/matita/ng/sets/setoids/prop1.con" in
98 let ref = NReference.reference_of_spec uri (NReference.Fix(0,2,4)) in
104 let uri = NUri.uri_of_string "cic:/matita/ng/sets/setoids/eq.con" in
105 let ref = NReference.reference_of_spec uri (NReference.Fix(0,0,2)) in
111 let u= NUri.uri_of_string "cic:/matita/ng/properties/relations/sym.con" in
112 let u = NReference.reference_of_spec u (NReference.Fix(0,1,3)) in
113 NCic.Appl[NCic.Const u; NCic.Implicit `Type; NCic.Implicit `Term;
114 NCic.Implicit `Term; NCic.Implicit `Term; eq];
117 let eq_morphism1 eq =
118 let u= NUri.uri_of_string "cic:/matita/ng/sets/setoids/eq_is_morphism1.con" in
119 let u = NReference.reference_of_spec u (NReference.Def 4) in
120 NCic.Appl[NCic.Const u; NCic.Implicit `Term; NCic.Implicit `Term;
121 NCic.Implicit `Term; NCic.Implicit `Term; eq];
124 let eq_morphism2 eq =
125 let u= NUri.uri_of_string "cic:/matita/ng/sets/setoids/eq_is_morphism2.con" in
126 let u = NReference.reference_of_spec u (NReference.Def 4) in
127 NCic.Appl[NCic.Const u; NCic.Implicit `Term; NCic.Implicit `Term;
128 NCic.Implicit `Term; eq; NCic.Implicit `Term];
132 let u= NUri.uri_of_string "cic:/matita/ng/properties/relations/trans.con" in
133 let u = NReference.reference_of_spec u (NReference.Fix(0,1,3)) in
134 NCic.Appl[NCic.Const u; NCic.Implicit `Type; NCic.Implicit `Term;
135 NCic.Implicit `Term; NCic.Implicit `Term; NCic.Implicit `Term; eq]
139 let uri = NUri.uri_of_string "cic:/matita/ng/logic/connectives/if.con" in
140 let ref = NReference.reference_of_spec uri (NReference.Fix(0,2,1)) in
141 NCic.Appl[NCic.Const ref; NCic.Implicit `Type; NCic.Implicit `Type;
146 let mk_refl = function
147 | NCic.Appl [_; _; x; _] ->
148 let uri= NUri.uri_of_string "cic:/matita/ng/properties/relations/refl.con" in
149 let ref = NReference.reference_of_spec uri (NReference.Fix(0,1,3)) in
150 NCic.Appl[NCic.Const ref; NCic.Implicit `Type; NCic.Implicit `Term;
151 NCic.Implicit `Term(*x*)]
155 let mk_refl = function
156 | NCic.Appl [_; ty; l; _]
157 -> NCic.Appl [eq_refl();ty;l]
161 let mk_morphism status eq amount ft pl vl =
166 prerr_endline (string_of_int n);
169 | Terms.Var _ -> assert false
170 | Terms.Node [] -> assert false
171 | Terms.Node [ Terms.Leaf eqt ; _; l; r ]
172 when (eqP ()) = eqt ->
173 if n=2 then eq_morphism1 (aux l tl)
174 else eq_morphism2 (aux r tl)
175 | Terms.Node (f::l) ->
180 let f = extract status amount vl f in
182 let imp = NCic.Implicit `Term in
183 NCic.Appl (dag::imp::imp::imp(* f *)::imp::imp::
186 NCicUntrusted.mk_appl acc [extract status amount vl t]
187 ) (1,extract status amount vl f) l)
188 in aux ft (List.rev pl)
191 let mk_proof status ?(demod=false) (bag : NCic.term Terms.bag) mp subst steps=
192 let module NCicBlob =
195 let module Pp = Pp.Pp(NCicBlob)
197 let module Subst = FoSubst in
199 let rec aux = function
201 | (j,_) :: tl when i = j -> 1
202 | _ :: tl -> 1 + aux tl
206 let vars_of i l = fst (List.assoc i l) in
207 let ty_of i l = snd (List.assoc i l) in
208 let close_with_lambdas vl t =
211 NCic.Lambda ("x"^string_of_int i, NCic.Implicit `Type, t))
214 let close_with_forall vl t =
217 NCic.Prod ("x"^string_of_int i, NCic.Implicit `Type, t))
221 let (_, lit, vl, proof),_,_ = Terms.get_from_bag id bag in
222 let lit =match lit with
223 | Terms.Predicate t -> t (* assert false *)
224 | Terms.Equation (l,r,ty,_) ->
225 Terms.Node [ Terms.Leaf eqP(); ty; l; r]
230 let lit,_,_ = get_literal mp in
231 let lit = Subst.apply_subst subst lit in
232 extract status 0 [] lit in
233 (* composition of all subst acting on goal *)
234 let res_subst = subst
236 let rec aux ongoal seen = function
239 let amount = List.length seen in
240 let lit,vl,proof = get_literal id in
241 if not ongoal && id = mp then
242 let lit = Subst.apply_subst subst lit in
243 let eq_ty = extract status amount [] lit in
245 if demod then NCic.Implicit `Term
246 else mk_refl eq_ty in
247 (* prerr_endline ("Reached m point, id=" ^ (string_of_int id));
248 (NCic.LetIn ("clause_" ^ string_of_int id, eq_ty, refl,
249 aux true ((id,([],lit))::seen) (id::tl))) *)
250 NCicSubstitution.subst status
251 ~avoid_beta_redexes:true ~no_implicit:false refl
252 (aux true ((id,([],lit))::seen) (id::tl))
255 | Terms.Exact _ when tl=[] ->
256 (* prerr_endline ("Exact (tl=[]) for " ^ (string_of_int id));*)
258 | Terms.Step _ when tl=[] -> assert false
261 prerr_endline ("Exact for " ^ (string_of_int id));
262 NCic.LetIn ("clause_" ^ string_of_int id,
263 close_with_forall vl (extract status amount vl lit),
264 close_with_lambdas vl (extract status amount vl ft),
266 ((id,(List.map (fun x -> Terms.Var x) vl,lit))::seen) tl)
268 NCicSubstitution.subst status
269 ~avoid_beta_redexes:true ~no_implicit:false
270 (close_with_lambdas vl (extract status amount vl ft))
272 ((id,(List.map (fun x -> Terms.Var x) vl,lit))::seen) tl)
273 | Terms.Step (_, id1, id2, dir, pos, subst) ->
274 let id, id1,(lit,vl,proof) =
276 let lit,vl,proof = get_literal id1 in
277 id1,id,(Subst.apply_subst res_subst lit,
278 Subst.filter res_subst vl, proof)
279 else id,id1,(lit,vl,proof) in
280 (* free variables remaining in the goal should not
281 be abstracted: we do not want to prove a generalization *)
282 let vl = if ongoal then [] else vl in
284 let vars = List.rev (vars_of id seen) in
285 let args = List.map (Subst.apply_subst subst) vars in
286 let args = List.map (extract status amount vl) args in
287 let rel_for_id = NCic.Rel (List.length vl + position id seen) in
288 if args = [] then rel_for_id
289 else NCic.Appl (rel_for_id::args)
291 let p_id1 = proof_of_id id1 in
292 let p_id2 = proof_of_id id2 in
296 if (ongoal=true) = (dir=Terms.Left2Right) then
299 let id1_ty = ty_of id1 seen in
301 match ty_of id2 seen with
302 | Terms.Node [ _; t; l; r ] ->
303 extract status amount vl (Subst.apply_subst subst t),
304 extract status amount vl (Subst.apply_subst subst l),
305 extract status amount vl (Subst.apply_subst subst r)
308 (*prerr_endline "mk_predicate :";
309 if ongoal then prerr_endline "ongoal=true"
310 else prerr_endline "ongoal=false";
311 prerr_endline ("id=" ^ string_of_int id);
312 prerr_endline ("id1=" ^ string_of_int id1);
313 prerr_endline ("id2=" ^ string_of_int id2);
314 prerr_endline ("Positions :" ^
316 (List.map string_of_int pos)));*)
318 p amount (Subst.apply_subst subst id1_ty) pos vl,
321 let rewrite_step = iff1 morphism p_id1
324 let pred, hole_type, l, r =
325 let id1_ty = ty_of id1 seen in
327 match ty_of id2 seen with
328 | Terms.Node [ _; t; l; r ] ->
329 extract status amount vl (Subst.apply_subst subst t),
330 extract status amount vl (Subst.apply_subst subst l),
331 extract status amount vl (Subst.apply_subst subst r)
335 prerr_endline "mk_predicate :";
336 if ongoal then prerr_endline "ongoal=true"
337 else prerr_endline "ongoal=false";
338 prerr_endline ("id=" ^ string_of_int id);
339 prerr_endline ("id1=" ^ string_of_int id1
340 ^": " ^ Pp.pp_foterm id1_ty);
341 prerr_endline ("id2=" ^ string_of_int id2
342 ^ ": " ^ NCicPp.ppterm [][][] id2_ty);
343 prerr_endline ("Positions :" ^
345 (List.map string_of_int pos)));*)
347 id2_ty amount (Subst.apply_subst subst id1_ty) pos vl,
352 if (ongoal=true) = (dir=Terms.Left2Right) then
354 [eq_ind_r(); hole_type; r; pred; p_id1; l; p_id2]
357 [ eq_ind(); hole_type; l; pred; p_id1; r; p_id2]
359 let body = aux ongoal
360 ((id,(List.map (fun x -> Terms.Var x) vl,lit))::seen) tl
363 NCicUntrusted.count_occurrences status [] 1 body in
365 NCicSubstitution.subst status
366 ~avoid_beta_redexes:true ~no_implicit:false
367 (close_with_lambdas vl rewrite_step) body
369 NCic.LetIn ("clause_" ^ string_of_int id,
370 close_with_forall vl (extract status amount vl lit),
371 (* NCic.Implicit `Type, *)
372 close_with_lambdas vl rewrite_step, body)
374 aux false [] steps, proof_type