2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department, University of Bologna, Italy.
6 ||T|| HELM is free software; you can redistribute it and/or
7 ||A|| modify it under the terms of the GNU General Public License
8 \ / version 2 or (at your option) any later version.
9 \ / This software is distributed as is, NO WARRANTY.
10 V_______________________________________________________________ *)
12 (* $Id: index.mli 9822 2009-06-03 15:37:06Z tassi $ *)
14 module Superposition (B : Orderings.Blob) =
16 module IDX = Index.Index(B)
17 module Unif = FoUnif.Founif(B)
18 module Subst = FoSubst
20 module Utils = FoUtils.Utils(B)
26 * B.t Terms.unit_clause
27 * B.t Terms.substitution
29 let print s = prerr_endline (Lazy.force s);;
33 let rec list_first f = function
35 | x::tl -> match f x with Some _ as x -> x | _ -> list_first f tl
38 let first_position pos ctx t f =
39 let inject_pos pos ctx = function
41 | Some (a,b,c,d) -> Some(ctx a,b,c,d,pos)
43 let rec aux pos ctx = function
44 | Terms.Leaf _ as t -> inject_pos pos ctx (f t)
48 | Some _ as x -> inject_pos pos ctx x
50 let rec first pre post = function
53 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
54 match aux (List.length pre :: pos) newctx t with
57 if post = [] then None (* tl is also empty *)
58 else first (pre @ [t]) (List.tl post) tl
60 first [] (List.tl l) l
65 let all_positions pos ctx t f =
66 let rec aux pos ctx = function
67 | Terms.Leaf _ as t -> f t pos ctx
72 (fun (acc,pre,post) t -> (* Invariant: pre @ [t] @ post = l *)
73 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
74 let acc = aux (List.length pre :: pos) newctx t @ acc in
75 if post = [] then acc, l, []
76 else acc, pre @ [t], List.tl post)
77 (f t pos ctx, [], List.tl l) l
84 let parallel_positions bag pos ctx id t f =
85 let rec aux bag pos ctx id = function
86 | Terms.Leaf _ as t -> f bag t pos ctx id
87 | Terms.Var _ as t -> bag,t,id
88 | Terms.Node (hd::l) as t->
89 let bag,t,id1 = f bag t pos ctx id in
93 (fun (bag,pre,post,id) t ->
94 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
95 let newpos = (List.length pre)::pos in
96 let bag,newt,id = aux bag newpos newctx id t in
97 if post = [] then bag, pre@[newt], [], id
98 else bag, pre @ [newt], List.tl post, id)
99 (bag, [hd], List.tl l, id) l
101 bag, Terms.Node l, id
103 (* else aux bag pos ctx id1 t *)
109 let visit bag pos ctx id t f =
110 let rec aux bag pos ctx id subst = function
111 | Terms.Leaf _ as t ->
112 let bag,subst,t,id = f bag t pos ctx id in
113 assert (subst=[]); bag,t,id
114 | Terms.Var i as t ->
115 let t= Subst.apply_subst subst t in
117 | Terms.Node (hd::l) ->
120 (fun (bag,pre,post,id) t ->
121 let newctx = fun x -> ctx (Terms.Node (pre@[x]@post)) in
122 let newpos = (List.length pre)::pos in
123 let bag,newt,id = aux bag newpos newctx id subst t in
124 if post = [] then bag, pre@[newt], [], id
125 else bag, pre @ [newt], List.tl post, id)
126 (bag, [hd], List.map (Subst.apply_subst subst) (List.tl l), id) l
128 let bag,subst,t,id1 = f bag (Terms.Node l) pos ctx id
130 if id1 = id then (assert (subst=[]); bag,t,id)
131 else aux bag pos ctx id1 subst t
134 aux bag pos ctx id [] t
137 let build_clause bag filter rule t subst id id2 pos dir =
138 let proof = Terms.Step(rule,id,id2,dir,pos,subst) in
139 let t = Subst.apply_subst subst t in
141 let tooflex,literal =
143 | Terms.Node [ Terms.Leaf eq ; ty; l; r ] when B.eq (B.eqP()) eq ->
144 let o = Order.compare_terms l r in
146 Terms.Var _,_,Terms.Gt
147 | _,Terms.Var _,Terms.Lt -> assert false
148 | Terms.Var _,_,(Terms.Incomparable | Terms.Invertible) ->
149 true, Terms.Equation (l, r, ty, o)
150 | _, Terms.Var _,(Terms.Incomparable | Terms.Invertible) ->
151 true, Terms.Equation (l, r, ty, o)
152 | _ -> false, Terms.Equation (l, r, ty, o))
153 | t -> false,Terms.Predicate t
156 Terms.add_to_bag (0, literal, Terms.vars_of_term t, proof) bag
158 if tooflex then None else Some (bag, uc)
160 ((*prerr_endline ("Filtering: " ^ Pp.pp_foterm t);*)None)
162 let prof_build_clause = HExtlib.profile ~enable "build_clause";;
163 let build_clause bag filter rule t subst id id2 pos x =
164 prof_build_clause.HExtlib.profile (build_clause bag filter rule t subst id id2 pos) x
168 (* ============ simplification ================= *)
169 let prof_demod_u = HExtlib.profile ~enable "demod.unify";;
170 let prof_demod_r = HExtlib.profile ~enable "demod.retrieve_generalizations";;
171 let prof_demod_o = HExtlib.profile ~enable "demod.compare_terms";;
172 let prof_demod_s = HExtlib.profile ~enable "demod.apply_subst";;
174 let demod table varlist subterm =
176 prof_demod_r.HExtlib.profile
177 (IDX.DT.retrieve_generalizations table) subterm
180 (fun (dir, (id,lit,vl,_)) ->
182 | Terms.Predicate _ -> assert false
183 | Terms.Equation (l,r,_,o) ->
184 let side, newside = if dir=Terms.Left2Right then l,r else r,l in
187 prof_demod_u.HExtlib.profile
188 (Unif.unification (* (varlist@vl) *) varlist subterm) side
191 prof_demod_s.HExtlib.profile
192 (Subst.apply_subst subst) side
195 prof_demod_s.HExtlib.profile
196 (Subst.apply_subst subst) newside
198 if o = Terms.Incomparable || o = Terms.Invertible then
200 prof_demod_o.HExtlib.profile
201 (Order.compare_terms newside) side in
202 (* Riazanov, pp. 45 (ii) *)
204 Some (newside, subst, id, dir)
206 ((*prerr_endline ("Filtering: " ^
207 Pp.pp_foterm side ^ " =(< || =)" ^
208 Pp.pp_foterm newside ^ " coming from " ^
209 Pp.pp_unit_clause uc );*)None)
211 Some (newside, subst, id, dir)
212 with FoUnif.UnificationFailure _ -> None)
213 (IDX.ClauseSet.elements cands)
215 let prof_demod = HExtlib.profile ~enable "demod";;
216 let demod table varlist x =
217 prof_demod.HExtlib.profile (demod table varlist) x
220 let mydemod table varlist subterm =
222 prof_demod_r.HExtlib.profile
223 (IDX.DT.retrieve_generalizations table) subterm
226 (fun (dir, ((id,lit,vl,_) as c)) ->
227 debug (lazy("candidate: "
228 ^ Pp.pp_unit_clause c));
230 | Terms.Predicate _ -> assert false
231 | Terms.Equation (l,r,_,o) ->
232 let side, newside = if dir=Terms.Left2Right then l,r else r,l in
235 prof_demod_u.HExtlib.profile
236 (Unif.unification (* (varlist@vl) *) varlist subterm) side
239 prof_demod_s.HExtlib.profile
240 (Subst.apply_subst subst) side
243 prof_demod_s.HExtlib.profile
244 (Subst.apply_subst subst) newside
246 if o = Terms.Incomparable || o = Terms.Invertible then
248 prof_demod_o.HExtlib.profile
249 (Order.compare_terms inewside) iside in
250 (* Riazanov, pp. 45 (ii) *)
252 Some (newside, subst, id, dir)
254 ((*prerr_endline ("Filtering: " ^
255 Pp.pp_foterm side ^ " =(< || =)" ^
256 Pp.pp_foterm newside ^ " coming from " ^
257 Pp.pp_unit_clause uc );*)
258 debug (lazy "not applied");None)
260 Some (newside, subst, id, dir)
261 with FoUnif.UnificationFailure _ ->
262 debug (lazy "not applied"); None)
263 (IDX.ClauseSet.elements cands)
266 let ctx_demod table vl bag t pos ctx id =
267 match mydemod table vl t with
268 | None -> (bag,[],t,id)
269 | Some (newside, subst, id2, dir) ->
270 let inewside = Subst.apply_subst subst newside in
271 match build_clause bag (fun _ -> true)
272 Terms.Demodulation (ctx inewside) subst id id2 pos dir
274 | None -> (bag,[],t,id) (* see tooflex; was assert false *)
275 | Some (bag,(id,_,_,_)) ->
276 (bag,subst,newside,id)
279 let rec demodulate bag (id, literal, vl, pr) table =
280 debug (lazy ("demodulate " ^ (string_of_int id)));
282 | Terms.Predicate t -> (* assert false *)
284 visit bag [] (fun x -> x) id t (ctx_demod table vl)
286 let cl,_,_ = Terms.get_from_bag id1 bag in
288 | Terms.Equation (l,r,ty,_) ->
291 (fun x -> Terms.Node [ Terms.Leaf (B.eqP()); ty; x; r ]) id l
296 (fun x -> Terms.Node [ Terms.Leaf (B.eqP()); ty; l; x ]) id1 r
299 let cl,_,_ = Terms.get_from_bag id2 bag in
303 let parallel_demod table vl bag t pos ctx id =
304 match demod table vl t with
306 | Some (newside, subst, id2, dir) ->
307 match build_clause bag (fun _ -> true)
308 Terms.Demodulation (ctx newside) subst id id2 pos dir
310 | None -> assert false
311 | Some (bag,(id,_,_,_)) ->
315 let are_alpha_eq cl1 cl2 =
316 let get_term (_,lit,_,_) =
318 | Terms.Predicate _ -> assert false
319 | Terms.Equation (l,r,ty,_) ->
320 Terms.Node [Terms.Leaf (B.eqP()); ty; l ; r]
322 try ignore(Unif.alpha_eq (get_term cl1) (get_term cl2)) ; true
323 with FoUnif.UnificationFailure _ -> false
326 let prof_demodulate = HExtlib.profile ~enable "demodulate";;
327 let demodulate bag clause x =
328 prof_demodulate.HExtlib.profile (demodulate bag clause) x
332 let is_identity_clause = function
333 | _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> true
334 | _, Terms.Equation (_,_,_,_), _, _ -> false
335 | _, Terms.Predicate _, _, _ -> assert false
338 let is_identity_goal = function
339 | _, Terms.Equation (_,_,_,Terms.Eq), _, _ -> Some []
340 | _, Terms.Equation (l,r,_,_), vl, proof ->
341 (try Some (Unif.unification (* vl *) [] l r)
342 with FoUnif.UnificationFailure _ -> None)
343 | _, Terms.Predicate _, _, _ -> assert false
346 let build_new_clause_reloc bag maxvar filter rule t subst id id2 pos dir =
347 let maxvar, _vl, subst = Utils.relocate maxvar (Terms.vars_of_term
348 (Subst.apply_subst subst t)) subst in
349 match build_clause bag filter rule t subst id id2 pos dir with
350 | Some (bag, c) -> Some ((bag, maxvar), c), subst
354 let build_new_clause bag maxvar filter rule t subst id id2 pos dir =
355 fst (build_new_clause_reloc bag maxvar filter rule t
356 subst id id2 pos dir)
359 let prof_build_new_clause = HExtlib.profile ~enable "build_new_clause";;
360 let build_new_clause bag maxvar filter rule t subst id id2 pos x =
361 prof_build_new_clause.HExtlib.profile (build_new_clause bag maxvar filter
362 rule t subst id id2 pos) x
365 let fold_build_new_clause bag maxvar id rule filter res =
366 let (bag, maxvar), res =
367 HExtlib.filter_map_acc
368 (fun (bag, maxvar) (t,subst,id2,pos,dir) ->
369 build_new_clause bag maxvar filter rule t subst id id2 pos dir)
375 (* rewrite_eq check if in table there an equation matching l=r;
376 used in subsumption and deep_eq. In deep_eq, we need to match
377 several times times w.r.t. the same table, hence we should refresh
378 the retrieved clauses, to avoid clashes of variables *)
380 let rewrite_eq ~refresh ~unify maxvar l r ty vl table =
381 let retrieve = if unify then IDX.DT.retrieve_unifiables
382 else IDX.DT.retrieve_generalizations in
383 let lcands = retrieve table l in
384 let rcands = retrieve table r in
386 let id, dir, l, r, vl =
388 | (d, (id,Terms.Equation (l,r,ty,_),vl,_))-> id, d, l, r, vl
391 let reverse = (dir = Terms.Left2Right) = b in
392 let l, r, proof_rewrite_dir = if reverse then l,r,Terms.Left2Right
393 else r,l, Terms.Right2Left in
394 (id,proof_rewrite_dir,Terms.Node [ Terms.Leaf (B.eqP()); ty; l; r ], vl)
396 let cands1 = List.map (f true) (IDX.ClauseSet.elements lcands) in
397 let cands2 = List.map (f false) (IDX.ClauseSet.elements rcands) in
398 let t = Terms.Node [ Terms.Leaf (B.eqP()); ty; l; r ] in
399 let locked_vars = if unify then [] else vl in
400 let rec aux = function
402 | (id2,dir,c,vl1)::tl ->
404 let c,maxvar = if refresh then
405 let maxvar,_,r = Utils.relocate maxvar vl1 [] in
406 Subst.apply_subst r c,maxvar
408 let subst = Unif.unification (* (vl@vl1) *) locked_vars c t in
409 Some (id2, dir, subst, maxvar)
410 with FoUnif.UnificationFailure _ -> aux tl
412 aux (cands1 @ cands2)
415 let is_subsumed ~unify bag maxvar (id, lit, vl, _) table =
417 | Terms.Predicate _ -> assert false
418 | Terms.Equation (l,r,ty,_) ->
419 match rewrite_eq ~refresh:false ~unify maxvar l r ty vl table with
421 | Some (id2, dir, subst, maxvar) ->
422 let id_t = Terms.Node [ Terms.Leaf (B.eqP()); ty; r; r ] in
423 build_new_clause bag maxvar (fun _ -> true)
424 Terms.Superposition id_t subst id id2 [2] dir
426 let prof_is_subsumed = HExtlib.profile ~enable "is_subsumed";;
427 let is_subsumed ~unify bag maxvar c x =
428 prof_is_subsumed.HExtlib.profile (is_subsumed ~unify bag maxvar c) x
430 (* id refers to a clause proving contextl l = contextr r *)
432 let rec deep_eq ~unify l r ty pos contextl contextr table acc =
433 (* let _ = prerr_endline ("pos = " ^ String.concat ","
434 (List.map string_of_int pos)) in *)
437 | Some(bag,maxvar,(id,lit,vl,p),subst) ->
438 (* prerr_endline ("input subst = "^Pp.pp_substitution subst); *)
439 (* prerr_endline ("l prima =" ^ Pp.pp_foterm l); *)
440 (* prerr_endline ("r prima =" ^ Pp.pp_foterm r); *)
441 let l = Subst.apply_subst subst l in
442 let r = Subst.apply_subst subst r in
443 (* prerr_endline ("l dopo =" ^ Pp.pp_foterm l); *)
444 (* prerr_endline ("r dopo =" ^ Pp.pp_foterm r); *)
446 let subst1 = Unif.unification (* vl *) [] l r in
448 match lit with Terms.Predicate _ -> assert false
449 | Terms.Equation (l,r,ty,o) ->
450 let l = Subst.apply_subst subst1 l in
451 let r = Subst.apply_subst subst1 r in
452 Terms.Equation (l, r, ty, o)
454 Some(bag,maxvar,(id,lit,vl,p),Subst.concat subst1 subst)
455 with FoUnif.UnificationFailure _ ->
456 match rewrite_eq ~refresh:true ~unify maxvar l r ty vl table with
457 | Some (id2, dir, subst1, maxvar) ->
458 (* prerr_endline ("subst1 = "^Pp.pp_substitution subst1);
459 prerr_endline ("old subst = "^Pp.pp_substitution subst); *)
460 let newsubst = Subst.concat subst1 subst in
462 FoSubst.apply_subst newsubst
463 (Terms.Node[Terms.Leaf (B.eqP());ty;contextl r;contextr r])
466 build_new_clause_reloc bag maxvar (fun _ -> true)
467 Terms.Superposition id_t
468 subst1 id id2 (pos@[2]) dir
470 | Some ((bag, maxvar), c), r ->
471 (* prerr_endline ("creo "^ Pp.pp_unit_clause c); *)
472 (* prerr_endline ("r = "^Pp.pp_substitution r); *)
473 let newsubst = Subst.flat
474 (Subst.concat r subst) in
475 Some(bag,maxvar,c,newsubst)
476 | None, _ -> assert false)
479 | Terms.Node (a::la), Terms.Node (b::lb) when
480 a = b && List.length la = List.length lb ->
483 (fun (acc,pre,postl,postr) a b ->
485 fun x -> contextl(Terms.Node (pre@(x::postl))) in
487 fun x -> contextr(Terms.Node (pre@(x::postr))) in
488 let newpos = List.length pre::pos in
490 if l = [] then [] else List.tl l in
491 (deep_eq ~unify a b ty
492 newpos newcl newcr table acc,pre@[b],
493 footail postl, footail postr))
494 (acc,[a],List.tl la,List.tl lb) la lb
499 let prof_deep_eq = HExtlib.profile ~enable "deep_eq";;
500 let deep_eq ~unify l r ty pos contextl contextr table x =
501 prof_deep_eq.HExtlib.profile (deep_eq ~unify l r ty pos contextl contextr table) x
504 let rec orphan_murder bag acc i =
505 match Terms.get_from_bag i bag with
506 | (_,_,_,Terms.Exact _),discarded,_ -> (discarded,acc)
507 | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),true,_ -> (true,acc)
508 | (_,_,_,Terms.Step (_,i1,i2,_,_,_)),false,_ ->
509 if (List.mem i acc) then (false,acc)
510 else match orphan_murder bag acc i1 with
511 | (true,acc) -> (true,acc)
513 let (res,acc) = orphan_murder bag acc i2 in
514 if res then res,acc else res,i::acc
517 let orphan_murder bag actives cl =
518 let (id,_,_,_) = cl in
519 let actives = List.map (fun (i,_,_,_) -> i) actives in
520 let (res,_) = orphan_murder bag actives id in
521 if res then debug (lazy "Orphan murdered"); res
523 let prof_orphan_murder = HExtlib.profile ~enable "orphan_murder";;
524 let orphan_murder bag actives x =
525 prof_orphan_murder.HExtlib.profile (orphan_murder bag actives) x
528 (* demodulate and check for subsumption *)
529 let simplify table maxvar bag clause =
530 debug (lazy "simplify...");
531 if is_identity_clause clause then bag,None
532 (* else if orphan_murder bag actives clause then bag,None *)
533 else let bag, clause = demodulate bag clause table in
534 if is_identity_clause clause then bag,None
536 match is_subsumed ~unify:false bag maxvar clause table with
537 | None -> bag, Some clause
538 | Some _ -> bag, None
541 let simplify table maxvar bag clause =
542 match simplify table maxvar bag clause with
544 let (id,_,_,_) = clause in
545 let (_,_,iter) = Terms.get_from_bag id bag in
546 Terms.replace_in_bag (clause,true,iter) bag, None
547 | bag, Some clause -> bag, Some clause
548 (*let (id,_,_,_) = clause in
549 if orphan_murder bag clause then
550 Terms.M.add id (clause,true) bag, Some clause
551 else bag, Some clause*)
553 let prof_simplify = HExtlib.profile ~enable "simplify";;
554 let simplify table maxvar bag x =
555 prof_simplify.HExtlib.profile (simplify table maxvar bag ) x
558 let one_pass_simplification new_clause (alist,atable) bag maxvar =
559 match simplify atable maxvar bag new_clause with
560 | bag,None -> bag,None (* new_clause has been discarded *)
561 | bag,(Some clause) ->
562 let ctable = IDX.index_unit_clause IDX.DT.empty clause in
563 let bag, alist, atable =
565 (fun (bag, alist, atable) c ->
566 match simplify ctable maxvar bag c with
567 |bag,None -> (bag,alist,atable)
568 (* an active clause as been discarded *)
570 bag, c :: alist, IDX.index_unit_clause atable c)
571 (bag,[],IDX.DT.empty) alist
573 bag, Some (clause, (alist,atable))
575 let prof_one_pass_simplification = HExtlib.profile ~enable "one_pass_simplification";;
576 let one_pass_simplification new_clause t bag x =
577 prof_one_pass_simplification.HExtlib.profile (one_pass_simplification new_clause t bag ) x
580 let simplification_step ~new_cl cl (alist,atable) bag maxvar new_clause =
582 if new_cl then atable else
583 IDX.index_unit_clause atable cl
585 (* Simplification of new_clause with : *
586 * - actives and cl if new_clause is not cl *
587 * - only actives otherwise *)
589 simplify atable1 maxvar bag new_clause with
590 | bag,None -> bag,(Some cl, None) (* new_clause has been discarded *)
592 (* Simplification of each active clause with clause *
593 * which is the simplified form of new_clause *)
594 let ctable = IDX.index_unit_clause IDX.DT.empty clause in
595 let bag, newa, alist, atable =
597 (fun (bag, newa, alist, atable) c ->
598 match simplify ctable maxvar bag c with
599 |bag,None -> (bag, newa, alist, atable)
600 (* an active clause as been discarded *)
603 bag, newa, c :: alist,
604 IDX.index_unit_clause atable c
606 bag, c1 :: newa, alist, atable)
607 (bag,[],[],IDX.DT.empty) alist
610 bag, (Some cl, Some (clause, (alist,atable), newa))
612 (* if new_clause is not cl, we simplify cl with clause *)
613 match simplify ctable maxvar bag cl with
615 (* cl has been discarded *)
616 bag,(None, Some (clause, (alist,atable), newa))
618 bag,(Some cl1, Some (clause, (alist,atable), newa))
620 let prof_simplification_step = HExtlib.profile ~enable "simplification_step";;
621 let simplification_step ~new_cl cl (alist,atable) bag maxvar x =
622 prof_simplification_step.HExtlib.profile (simplification_step ~new_cl cl (alist,atable) bag maxvar) x
625 let keep_simplified cl (alist,atable) bag maxvar =
626 let rec keep_simplified_aux ~new_cl cl (alist,atable) bag newc =
628 match simplification_step ~new_cl cl (alist,atable) bag maxvar cl with
629 | _,(None, _) -> assert false
630 | bag,(Some _, None) -> bag,None
631 | bag,(Some _, Some (clause, (alist,atable), newa)) ->
632 keep_simplified_aux ~new_cl:(cl!=clause) clause (alist,atable)
636 | [] -> bag, Some (cl, (alist,atable))
638 match simplification_step ~new_cl cl
639 (alist,atable) bag maxvar hd with
640 | _,(None,None) -> assert false
641 | bag,(Some _,None) ->
642 keep_simplified_aux ~new_cl cl (alist,atable) bag tl
643 | bag,(None, Some _) -> bag,None
644 | bag,(Some cl1, Some (clause, (alist,atable), newa)) ->
646 (clause::alist, IDX.index_unit_clause atable clause)
648 keep_simplified_aux ~new_cl:(cl!=cl1) cl1 (alist,atable)
651 keep_simplified_aux ~new_cl:true cl (alist,atable) bag []
653 let prof_keep_simplified = HExtlib.profile ~enable "keep_simplified";;
654 let keep_simplified cl t bag x =
655 prof_keep_simplified.HExtlib.profile (keep_simplified cl t bag) x
658 (* this is like simplify but raises Success *)
659 let simplify_goal ~no_demod maxvar table bag g_actives clause =
661 if no_demod then bag, clause else demodulate bag clause table
663 let _ = debug(lazy ("demodulated goal : "
664 ^ Pp.pp_unit_clause clause))
666 if List.exists (are_alpha_eq clause) g_actives then None
667 else match (is_identity_goal clause) with
668 | Some subst -> raise (Success (bag,maxvar,clause,subst))
670 let (id,lit,vl,_) = clause in
671 (* this optimization makes sense only if we demodulated, since in
672 that case the clause should have been turned into an identity *)
673 if (vl = [] && not(no_demod))
674 then Some (bag,clause)
678 | Terms.Equation(l,r,ty,_) -> l,r,ty
681 match deep_eq ~unify:true l r ty [] (fun x -> x) (fun x -> x)
682 table (Some(bag,maxvar,clause,Subst.id_subst)) with
683 | None -> Some (bag,clause)
684 | Some (bag,maxvar,cl,subst) ->
685 debug (lazy "Goal subsumed");
686 debug (lazy ("subst in superpos: " ^ Pp.pp_substitution subst));
687 raise (Success (bag,maxvar,cl,subst))
689 match is_subsumed ~unify:true bag maxvar clause table with
690 | None -> Some (bag, clause)
691 | Some ((bag,maxvar),c) ->
692 debug (lazy "Goal subsumed");
693 raise (Success (bag,maxvar,c))
697 let prof_simplify_goal = HExtlib.profile ~enable "simplify_goal";;
698 let simplify_goal ~no_demod maxvar table bag g_actives x =
699 prof_simplify_goal.HExtlib.profile ( simplify_goal ~no_demod maxvar table bag g_actives) x
702 (* =================== inference ===================== *)
704 (* this is OK for both the sup_left and sup_right inference steps *)
705 let superposition table varlist subterm pos context =
706 let cands = IDX.DT.retrieve_unifiables table subterm in
708 (fun (dir, (id,lit,vl,_ (*as uc*))) ->
710 | Terms.Predicate _ -> assert false
711 | Terms.Equation (l,r,_,o) ->
712 let side, newside = if dir=Terms.Left2Right then l,r else r,l in
715 Unif.unification (* (varlist@vl)*) [] subterm side
717 if o = Terms.Incomparable || o = Terms.Invertible then
718 let side = Subst.apply_subst subst side in
719 let newside = Subst.apply_subst subst newside in
720 let o = Order.compare_terms side newside in
721 (* XXX: check Riazanov p. 33 (iii) *)
722 if o <> Terms.Lt && o <> Terms.Eq then
723 Some (context newside, subst, id, pos, dir)
725 ((*prerr_endline ("Filtering: " ^
726 Pp.pp_foterm side ^ " =(< || =)" ^
727 Pp.pp_foterm newside);*)None)
729 Some (context newside, subst, id, pos, dir)
730 with FoUnif.UnificationFailure _ -> None)
731 (IDX.ClauseSet.elements cands)
734 (* Superposes selected equation with equalities in table *)
735 let superposition_with_table bag maxvar (id,selected,vl,_) table =
737 | Terms.Predicate _ -> assert false
738 | Terms.Equation (l,r,ty,Terms.Lt) ->
739 fold_build_new_clause bag maxvar id Terms.Superposition
742 (fun x -> Terms.Node [ Terms.Leaf (B.eqP()); ty; l; x ])
743 r (superposition table vl))
744 | Terms.Equation (l,r,ty,Terms.Invertible)
745 | Terms.Equation (l,r,ty,Terms.Gt) ->
746 fold_build_new_clause bag maxvar id Terms.Superposition
749 (fun x -> Terms.Node [ Terms.Leaf (B.eqP()); ty; x; r ])
750 l (superposition table vl))
751 | Terms.Equation (l,r,ty,Terms.Incomparable) ->
752 let filtering avoid subst = (* Riazanov: p.33 condition (iv) *)
753 let l = Subst.apply_subst subst l in
754 let r = Subst.apply_subst subst r in
755 let o = Order.compare_terms l r in
756 o <> avoid && o <> Terms.Eq
758 let bag, maxvar,r_terms =
759 fold_build_new_clause bag maxvar id Terms.Superposition
762 (fun x -> Terms.Node [ Terms.Leaf (B.eqP()); ty; l; x ])
763 r (superposition table vl))
765 let bag, maxvar, l_terms =
766 fold_build_new_clause bag maxvar id Terms.Superposition
769 (fun x -> Terms.Node [ Terms.Leaf (B.eqP()); ty; x; r ])
770 l (superposition table vl))
772 bag, maxvar, r_terms @ l_terms
776 (* the current equation is normal w.r.t. demodulation with atable
777 * (and is not the identity) *)
778 let infer_right bag maxvar current (alist,atable) =
779 (* We demodulate actives clause with current until all *
780 * active clauses are reduced w.r.t each other *)
781 (* let bag, (alist,atable) = keep_simplified (alist,atable) bag [current] in *)
782 let ctable = IDX.index_unit_clause IDX.DT.empty current in
783 (* let bag, (alist, atable) =
785 HExtlib.filter_map_acc (simplify ctable) bag alist
787 bag, (alist, List.fold_left IDX.index_unit_clause IDX.DT.empty alist)
789 debug (lazy "Simplified active clauses with fact");
790 (* We superpose active clauses with current *)
791 let bag, maxvar, new_clauses =
793 (fun (bag, maxvar, acc) active ->
794 let bag, maxvar, newc =
795 superposition_with_table bag maxvar active ctable
797 bag, maxvar, newc @ acc)
798 (bag, maxvar, []) alist
802 ("New clauses :" ^ (String.concat ";\n"
803 (List.map Pp.pp_unit_clause new_clauses))));
804 debug (lazy "First superpositions");
805 (* We add current to active clauses so that it can be *
806 * superposed with itself *)
808 current :: alist, IDX.index_unit_clause atable current
810 debug (lazy "Indexed");
811 let fresh_current, maxvar = Utils.fresh_unit_clause maxvar current in
812 (* We need to put fresh_current into the bag so that all *
813 * variables clauses refer to are known. *)
814 let bag, fresh_current = Terms.add_to_bag fresh_current bag in
815 (* We superpose current with active clauses *)
816 let bag, maxvar, additional_new_clauses =
817 superposition_with_table bag maxvar fresh_current atable
819 debug (lazy "Another superposition");
820 let new_clauses = new_clauses @ additional_new_clauses in
821 (* debug (lazy (Printf.sprintf "Demodulating %d clauses"
822 (List.length new_clauses))); *)
823 let bag, new_clauses =
824 HExtlib.filter_map_monad (simplify atable maxvar) bag new_clauses
826 debug (lazy "Demodulated new clauses");
827 bag, maxvar, (alist, atable), new_clauses
830 let prof_ir = HExtlib.profile ~enable "infer_right";;
831 let infer_right bag maxvar current t =
832 prof_ir.HExtlib.profile (infer_right bag maxvar current) t
835 let infer_left bag maxvar goal (_alist, atable) =
836 (* We superpose the goal with active clauses *)
837 if (match goal with (_,_,[],_) -> true | _ -> false) then bag, maxvar, []
839 let bag, maxvar, new_goals =
840 superposition_with_table bag maxvar goal atable
842 debug(lazy "Superposed goal with active clauses");
843 (* We simplify the new goals with active clauses *)
847 match simplify_goal ~no_demod:false maxvar atable bag [] g with
848 | None -> assert false
849 | Some (bag,g) -> bag,g::acc)
852 debug (lazy "Simplified new goals with active clauses");
853 bag, maxvar, List.rev new_goals
856 let prof_il = HExtlib.profile ~enable "infer_left";;
857 let infer_left bag maxvar goal t =
858 prof_il.HExtlib.profile (infer_left bag maxvar goal) t