1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 set "baseuri" "cic:/matita/CoRN-Decl/transc/TaylorSeries".
21 (* $Id: TaylorSeries.v,v 1.7 2004/04/23 10:01:08 lcf Exp $ *)
23 include "transc/PowerSeries.ma".
25 include "ftc/Taylor.ma".
29 We now generalize our work on Taylor's theorem to define the Taylor
30 series of an infinitely many times differentiable function as a power
31 series. We prove convergence (always) of the Taylor series and give
32 criteria for when the sum of this series is the original function.
36 %\begin{convention}% Let [J] be a proper interval and [F] an
37 infinitely many times differentiable function in [J]. Let [a] be a
46 alias id "J" = "cic:/CoRN/transc/TaylorSeries/Definitions/J.var".
48 alias id "pJ" = "cic:/CoRN/transc/TaylorSeries/Definitions/pJ.var".
50 alias id "F" = "cic:/CoRN/transc/TaylorSeries/Definitions/F.var".
52 alias id "diffF" = "cic:/CoRN/transc/TaylorSeries/Definitions/diffF.var".
54 alias id "a" = "cic:/CoRN/transc/TaylorSeries/Definitions/a.var".
56 alias id "Ha" = "cic:/CoRN/transc/TaylorSeries/Definitions/Ha.var".
58 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series'.con".
61 %\begin{convention}% Assume also that [f] is the sequence of
66 alias id "f" = "cic:/CoRN/transc/TaylorSeries/Definitions/f.var".
68 alias id "derF" = "cic:/CoRN/transc/TaylorSeries/Definitions/derF.var".
70 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series.con".
76 (*#* Characterizations of the Taylor remainder. *)
78 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Rem_char.con".
80 inline "cic:/CoRN/transc/TaylorSeries/abs_Taylor_Rem_char.con".
87 Section Convergence_in_IR
92 Our interval is now the real line. We begin by proving some helpful
93 continuity properties, then define a boundedness condition for the
94 derivatives of [F] that guarantees convergence of its Taylor series to
98 alias id "H" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/H.var".
100 alias id "F" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/F.var".
102 alias id "a" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/a.var".
104 alias id "Ha" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/Ha.var".
106 alias id "f" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/f.var".
108 alias id "derF" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/derF.var".
110 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_imp_cont.con".
112 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_lemma_cont.con".
114 inline "cic:/CoRN/transc/TaylorSeries/Taylor_bnd.con".
118 alias id "bndf" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/bndf.var".
128 inline "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/H1.con" "Convergence_in_IR__".
134 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_lemma1.con".
136 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_lemma2.con".
140 (*#* The Taylor series always converges on the realline. *)
150 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_IR.con".
158 inline "cic:/CoRN/transc/TaylorSeries/Taylor_majoration_lemma.con".
164 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_lemma3.con".
169 We now prove that, under our assumptions, it actually converges to the
170 original function. For generality and also usability, however, we
171 will separately assume convergence.
176 alias id "Hf" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/Hf.var".
188 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_to_fun.con".
191 End Convergence_in_IR
195 Section Other_Results
199 The condition for the previous lemma is not very easy to prove. We
200 give some helpful lemmas.
203 inline "cic:/CoRN/transc/TaylorSeries/Taylor_bnd_trans.con".
211 inline "cic:/CoRN/transc/TaylorSeries/convergence_lemma.con".
215 inline "cic:/CoRN/transc/TaylorSeries/bnd_imp_Taylor_bnd.con".
218 Finally, a uniqueness criterium: two functions [F] and [G] are equal,
219 provided that their derivatives coincide at a given point and their
220 Taylor series converge to themselves.
223 alias id "F" = "cic:/CoRN/transc/TaylorSeries/Other_Results/F.var".
225 alias id "G" = "cic:/CoRN/transc/TaylorSeries/Other_Results/G.var".
227 alias id "a" = "cic:/CoRN/transc/TaylorSeries/Other_Results/a.var".
229 alias id "f" = "cic:/CoRN/transc/TaylorSeries/Other_Results/f.var".
231 alias id "g" = "cic:/CoRN/transc/TaylorSeries/Other_Results/g.var".
233 alias id "derF" = "cic:/CoRN/transc/TaylorSeries/Other_Results/derF.var".
235 alias id "derG" = "cic:/CoRN/transc/TaylorSeries/Other_Results/derG.var".
237 alias id "bndf" = "cic:/CoRN/transc/TaylorSeries/Other_Results/bndf.var".
239 alias id "bndg" = "cic:/CoRN/transc/TaylorSeries/Other_Results/bndg.var".
243 alias id "Heq" = "cic:/CoRN/transc/TaylorSeries/Other_Results/Heq.var".
249 inline "cic:/CoRN/transc/TaylorSeries/Other_Results/Hf.con" "Other_Results__".
253 inline "cic:/CoRN/transc/TaylorSeries/Taylor_unique_crit.con".