]> matita.cs.unibo.it Git - helm.git/blob - matitaB/matita/contribs/CoRN-Decl/transc/TaylorSeries.ma
Matitaweb: Fixes a bug which prevented Mozilla from displaying long goals
[helm.git] / matitaB / matita / contribs / CoRN-Decl / transc / TaylorSeries.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 (* This file was automatically generated: do not edit *********************)
16
17 set "baseuri" "cic:/matita/CoRN-Decl/transc/TaylorSeries".
18
19 include "CoRN.ma".
20
21 (* $Id: TaylorSeries.v,v 1.7 2004/04/23 10:01:08 lcf Exp $ *)
22
23 include "transc/PowerSeries.ma".
24
25 include "ftc/Taylor.ma".
26
27 (*#* *Taylor Series
28
29 We now generalize our work on Taylor's theorem to define the Taylor
30 series of an infinitely many times differentiable function as a power
31 series.  We prove convergence (always) of the Taylor series and give
32 criteria for when the sum of this series is the original function.
33
34 **Definitions
35
36 %\begin{convention}% Let [J] be a proper interval and [F] an
37 infinitely many times differentiable function in [J].  Let [a] be a
38 point of [J].
39 %\end{convention}%
40 *)
41
42 (* UNEXPORTED
43 Section Definitions
44 *)
45
46 alias id "J" = "cic:/CoRN/transc/TaylorSeries/Definitions/J.var".
47
48 alias id "pJ" = "cic:/CoRN/transc/TaylorSeries/Definitions/pJ.var".
49
50 alias id "F" = "cic:/CoRN/transc/TaylorSeries/Definitions/F.var".
51
52 alias id "diffF" = "cic:/CoRN/transc/TaylorSeries/Definitions/diffF.var".
53
54 alias id "a" = "cic:/CoRN/transc/TaylorSeries/Definitions/a.var".
55
56 alias id "Ha" = "cic:/CoRN/transc/TaylorSeries/Definitions/Ha.var".
57
58 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series'.con".
59
60 (*#*
61 %\begin{convention}% Assume also that [f] is the sequence of
62 derivatives of [F].
63 %\end{convention}%
64 *)
65
66 alias id "f" = "cic:/CoRN/transc/TaylorSeries/Definitions/f.var".
67
68 alias id "derF" = "cic:/CoRN/transc/TaylorSeries/Definitions/derF.var".
69
70 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series.con".
71
72 (* UNEXPORTED
73 Opaque N_Deriv.
74 *)
75
76 (*#* Characterizations of the Taylor remainder. *)
77
78 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Rem_char.con".
79
80 inline "cic:/CoRN/transc/TaylorSeries/abs_Taylor_Rem_char.con".
81
82 (* UNEXPORTED
83 End Definitions
84 *)
85
86 (* UNEXPORTED
87 Section Convergence_in_IR
88 *)
89
90 (*#* **Convergence
91
92 Our interval is now the real line.  We begin by proving some helpful
93 continuity properties, then define a boundedness condition for the
94 derivatives of [F] that guarantees convergence of its Taylor series to
95 [F].
96 *)
97
98 alias id "H" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/H.var".
99
100 alias id "F" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/F.var".
101
102 alias id "a" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/a.var".
103
104 alias id "Ha" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/Ha.var".
105
106 alias id "f" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/f.var".
107
108 alias id "derF" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/derF.var".
109
110 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_imp_cont.con".
111
112 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_lemma_cont.con".
113
114 inline "cic:/CoRN/transc/TaylorSeries/Taylor_bnd.con".
115
116 (* begin show *)
117
118 alias id "bndf" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/bndf.var".
119
120 (* end show *)
121
122 (* UNEXPORTED
123 Opaque nexp_op fac.
124 *)
125
126 (* begin hide *)
127
128 inline "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/H1.con" "Convergence_in_IR__".
129
130 (* UNEXPORTED
131 Transparent nexp_op.
132 *)
133
134 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_lemma1.con".
135
136 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_lemma2.con".
137
138 (* end hide *)
139
140 (*#* The Taylor series always converges on the realline. *)
141
142 (* UNEXPORTED
143 Transparent nexp_op.
144 *)
145
146 (* UNEXPORTED
147 Opaque nexp_op.
148 *)
149
150 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_IR.con".
151
152 (* begin hide *)
153
154 (* UNEXPORTED
155 Transparent nexp_op.
156 *)
157
158 inline "cic:/CoRN/transc/TaylorSeries/Taylor_majoration_lemma.con".
159
160 (* UNEXPORTED
161 Opaque N_Deriv fac.
162 *)
163
164 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_lemma3.con".
165
166 (* end hide *)
167
168 (*#*
169 We now prove that, under our assumptions, it actually converges to the
170 original function.  For generality and also usability, however, we
171 will separately assume convergence.
172 *)
173
174 (* begin show *)
175
176 alias id "Hf" = "cic:/CoRN/transc/TaylorSeries/Convergence_in_IR/Hf.var".
177
178 (* end show *)
179
180 (* UNEXPORTED
181 Transparent fac.
182 *)
183
184 (* UNEXPORTED
185 Opaque mult.
186 *)
187
188 inline "cic:/CoRN/transc/TaylorSeries/Taylor_Series_conv_to_fun.con".
189
190 (* UNEXPORTED
191 End Convergence_in_IR
192 *)
193
194 (* UNEXPORTED
195 Section Other_Results
196 *)
197
198 (*#*
199 The condition for the previous lemma is not very easy to prove.  We
200 give some helpful lemmas.
201 *)
202
203 inline "cic:/CoRN/transc/TaylorSeries/Taylor_bnd_trans.con".
204
205 (* begin hide *)
206
207 (* UNEXPORTED
208 Opaque nexp_op.
209 *)
210
211 inline "cic:/CoRN/transc/TaylorSeries/convergence_lemma.con".
212
213 (* end hide *)
214
215 inline "cic:/CoRN/transc/TaylorSeries/bnd_imp_Taylor_bnd.con".
216
217 (*#*
218 Finally, a uniqueness criterium: two functions [F] and [G] are equal,
219 provided that their derivatives coincide at a given point and their
220 Taylor series converge to themselves.
221 *)
222
223 alias id "F" = "cic:/CoRN/transc/TaylorSeries/Other_Results/F.var".
224
225 alias id "G" = "cic:/CoRN/transc/TaylorSeries/Other_Results/G.var".
226
227 alias id "a" = "cic:/CoRN/transc/TaylorSeries/Other_Results/a.var".
228
229 alias id "f" = "cic:/CoRN/transc/TaylorSeries/Other_Results/f.var".
230
231 alias id "g" = "cic:/CoRN/transc/TaylorSeries/Other_Results/g.var".
232
233 alias id "derF" = "cic:/CoRN/transc/TaylorSeries/Other_Results/derF.var".
234
235 alias id "derG" = "cic:/CoRN/transc/TaylorSeries/Other_Results/derG.var".
236
237 alias id "bndf" = "cic:/CoRN/transc/TaylorSeries/Other_Results/bndf.var".
238
239 alias id "bndg" = "cic:/CoRN/transc/TaylorSeries/Other_Results/bndg.var".
240
241 (* begin show *)
242
243 alias id "Heq" = "cic:/CoRN/transc/TaylorSeries/Other_Results/Heq.var".
244
245 (* end show *)
246
247 (* begin hide *)
248
249 inline "cic:/CoRN/transc/TaylorSeries/Other_Results/Hf.con" "Other_Results__".
250
251 (* end hide *)
252
253 inline "cic:/CoRN/transc/TaylorSeries/Taylor_unique_crit.con".
254
255 (* UNEXPORTED
256 End Other_Results
257 *)
258