1 set "baseuri" "cic:/matita/TPTP/HWV003-1".
2 include "logic/equality.ma".
4 (* Inclusion of: HWV003-1.p *)
6 (* -------------------------------------------------------------------------- *)
8 (* File : HWV003-1 : TPTP v3.2.0. Released v1.1.0. *)
10 (* Domain : Hardware Verification *)
12 (* Problem : One bit Full Adder *)
14 (* Version : [WO+92] axioms. *)
18 (* Refs : [WO+92] Wos et al. (1992), Automated Reasoning: Introduction a *)
20 (* Source : [WO+92] *)
22 (* Names : - [WO+92] *)
24 (* Status : Unsatisfiable *)
26 (* Rating : 0.29 v3.1.0, 0.67 v2.7.0, 0.50 v2.6.0, 0.86 v2.5.0, 0.80 v2.4.0, 0.83 v2.3.0, 1.00 v2.2.1, 0.89 v2.2.0, 0.86 v2.1.0, 1.00 v2.0.0 *)
28 (* Syntax : Number of clauses : 47 ( 0 non-Horn; 47 unit; 13 RR) *)
30 (* Number of atoms : 47 ( 45 equality) *)
32 (* Maximal clause size : 1 ( 1 average) *)
34 (* Number of predicates : 2 ( 0 propositional; 2-2 arity) *)
36 (* Number of functors : 20 ( 14 constant; 0-3 arity) *)
38 (* Number of variables : 69 ( 14 singleton) *)
40 (* Maximal term depth : 4 ( 2 average) *)
44 (* -------------------------------------------------------------------------- *)
46 (* ----Include definitions of AND, OR and NOT *)
48 (* Inclusion of: Axioms/HWC002-0.ax *)
50 (* -------------------------------------------------------------------------- *)
52 (* File : HWC002-0 : TPTP v3.2.0. Released v1.0.0. *)
54 (* Domain : Hardware Creation *)
56 (* Axioms : Definitions of AND, OR and NOT *)
58 (* Version : [WO+92] axioms. *)
60 (* Axiom formulation : Non-ground axioms. *)
64 (* Refs : [WO+92] Wos et al. (1992), Automated Reasoning: Introduction a *)
72 (* Syntax : Number of clauses : 6 ( 0 non-Horn; 6 unit; 2 RR) *)
74 (* Number of literals : 6 ( 6 equality) *)
76 (* Maximal clause size : 1 ( 1 average) *)
78 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
80 (* Number of functors : 5 ( 2 constant; 0-2 arity) *)
82 (* Number of variables : 4 ( 2 singleton) *)
84 (* Maximal term depth : 2 ( 2 average) *)
88 (* -------------------------------------------------------------------------- *)
90 (* -------------------------------------------------------------------------- *)
92 (* -------------------------------------------------------------------------- *)
98 (* ----Evaluators of lists of 3 terms *)
100 (* ----Simplifiers for products of 4 terms *)
102 (* ----Subsumption type demodulators *)
104 (* ----Karnaugh map technique *)
106 (* ----Karnaugh simplifier of inside product *)
108 (* ----Circuit description *)
109 theorem prove_circuit:
110 ∀Univ:Set.∀X:Univ.∀X1:Univ.∀X2:Univ.∀X3:Univ.∀Y:Univ.∀Z:Univ.∀a:Univ.∀a11:Univ.∀a12:Univ.∀a13:Univ.∀a14:Univ.∀a15:Univ.∀a16:Univ.∀a17:Univ.∀myand:∀_:Univ.∀_:Univ.Univ.∀b:Univ.∀c1:Univ.∀carryin:Univ.∀carryout:∀_:Univ.∀_:Univ.∀_:Univ.Univ.∀circuit:∀_:Univ.∀_:Univ.Prop.∀n0:Univ.∀n1:Univ.∀not:∀_:Univ.Univ.∀or:∀_:Univ.∀_:Univ.Univ.∀s1:Univ.∀sum:∀_:Univ.∀_:Univ.∀_:Univ.Univ.∀xor:∀_:Univ.∀_:Univ.Univ.∀H0:circuit s1 c1.∀H1:eq Univ c1 (not (myand a11 a15)).∀H2:eq Univ s1 (not (myand a16 a17)).∀H3:eq Univ a17 (not (myand a15 carryin)).∀H4:eq Univ a16 (not (myand a14 a15)).∀H5:eq Univ a15 (not (myand a14 carryin)).∀H6:eq Univ a14 (not (myand a12 a13)).∀H7:eq Univ a13 (not (myand a11 b)).∀H8:eq Univ a12 (not (myand a11 a)).∀H9:eq Univ a11 (not (myand a b)).∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (sum X Y Z) (xor (xor X Y) Z).∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (carryout X Y Z) (or (myand X (or Y Z)) (myand (not X) (myand Y Z))).∀H12:∀X:Univ.∀Y:Univ.eq Univ (xor X Y) (or (myand X (not Y)) (myand Y (not X))).∀H13:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (or (myand (myand X Y) (not Z)) (myand X Z)) (or (myand X Y) (myand X Z)).∀H14:∀X:Univ.∀Y:Univ.eq Univ (or (myand (not X) (not Y)) Y) (or Y (not X)).∀H15:∀X:Univ.∀Y:Univ.eq Univ (or (myand X (not Y)) Y) (or X Y).∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (or (or X (myand Y Z)) Z) (or X Z).∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (or (or (myand X Y) Z) Y) (or Z Y).∀H18:∀X:Univ.∀Y:Univ.eq Univ (or (myand X Y) X) X.∀H19:∀X:Univ.∀Y:Univ.eq Univ (or (myand X Y) Y) Y.∀H20:∀X1:Univ.∀X2:Univ.∀X3:Univ.eq Univ (myand (myand (myand X1 X2) X3) (not X2)) n0.∀H21:∀X1:Univ.∀X2:Univ.∀X3:Univ.eq Univ (myand (myand (myand X1 X2) X3) (not X1)) n0.∀H22:∀X:Univ.∀Y:Univ.eq Univ (or (or X Y) Y) (or X Y).∀H23:∀X:Univ.∀Y:Univ.eq Univ (myand (myand X Y) Y) (myand X Y).∀H24:∀X:Univ.∀Y:Univ.eq Univ (or (or X Y) (not X)) n1.∀H25:∀X:Univ.∀Y:Univ.eq Univ (or (or X Y) (not Y)) n1.∀H26:∀X:Univ.∀Y:Univ.eq Univ (myand (myand X Y) (not X)) n0.∀H27:∀X:Univ.∀Y:Univ.eq Univ (myand (myand X Y) (not Y)) n0.∀H28:∀X:Univ.eq Univ (or X X) X.∀H29:∀X:Univ.eq Univ (myand X X) X.∀H30:∀X:Univ.eq Univ (or X (not X)) n1.∀H31:∀X:Univ.eq Univ (myand X (not X)) n0.∀H32:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (or (or X Y) Z) (or (or X Z) Y).∀H33:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (myand (myand X Y) Z) (myand (myand X Z) Y).∀H34:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (myand (or X Y) Z) (or (myand X Z) (myand Y Z)).∀H35:∀X:Univ.∀Y:Univ.eq Univ (or X Y) (or Y X).∀H36:∀X:Univ.∀Y:Univ.eq Univ (myand X Y) (myand Y X).∀H37:∀X:Univ.eq Univ (not (not X)) X.∀H38:∀X:Univ.∀Y:Univ.eq Univ (not (or X Y)) (myand (not X) (not Y)).∀H39:∀X:Univ.∀Y:Univ.eq Univ (not (myand X Y)) (or (not X) (not Y)).∀H40:eq Univ (not n1) n0.∀H41:eq Univ (not n0) n1.∀H42:∀X:Univ.eq Univ (or X n1) n1.∀H43:∀X:Univ.eq Univ (or X n0) X.∀H44:∀X:Univ.eq Univ (myand X n1) X.∀H45:∀X:Univ.eq Univ (myand X n0) n0.circuit (sum a b carryin) (carryout a b carryin)
113 autobatch depth=5 width=5 size=20 timeout=10;
118 (* -------------------------------------------------------------------------- *)