1 include "logic/equality.ma".
3 (* Inclusion of: ALG007-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : ALG007-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : General Algebra *)
11 (* Problem : Simplification of Kalman's set difference basis (part 2) *)
13 (* Version : [MP96] (equality) axioms : Especial. *)
15 (* English : This is part 2 of a proof that one of the axioms in Kalman's *)
17 (* basis for set difference can be simplified. *)
19 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
21 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
23 (* Source : [McC98] *)
25 (* Names : SD-3-b [MP96] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.00 v3.4.0, 0.12 v3.3.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.2.1 *)
31 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 1 RR) *)
33 (* Number of atoms : 4 ( 4 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 4 ( 3 constant; 0-2 arity) *)
41 (* Number of variables : 7 ( 1 singleton) *)
43 (* Maximal term depth : 3 ( 3 average) *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Kalman's axioms for set difference: *)
51 (* ----Simplified third axiom: *)
53 (* ----Denial of original third axiom: *)
54 ntheorem prove_set_difference_3:
55 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
59 ∀difference:∀_:Univ.∀_:Univ.Univ.
60 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (difference (difference X Y) Z) (difference (difference X Z) Y).
61 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference X Y)) (difference Y (difference Y X)).
62 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (difference X (difference Y X)) X.eq Univ (difference (difference a b) c) (difference (difference a c) (difference b c)))
76 ntry (nassumption) ##;
79 (* -------------------------------------------------------------------------- *)