1 include "logic/equality.ma".
3 (* Inclusion of: BOO013-4.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : BOO013-4 : TPTP v3.7.0. Released v1.1.0. *)
9 (* Domain : Boolean Algebra *)
11 (* Problem : The inverse of X is unique *)
13 (* Version : [Ver94] (equality) axioms. *)
17 (* Refs : [Ver94] Veroff (1994), Problem Set *)
19 (* Source : [Ver94] *)
21 (* Names : TE [Ver94] *)
23 (* Status : Unsatisfiable *)
25 (* Rating : 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.25 v2.0.0 *)
27 (* Syntax : Number of clauses : 11 ( 0 non-Horn; 11 unit; 3 RR) *)
29 (* Number of atoms : 11 ( 11 equality) *)
31 (* Maximal clause size : 1 ( 1 average) *)
33 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
35 (* Number of functors : 7 ( 4 constant; 0-2 arity) *)
37 (* Number of variables : 14 ( 0 singleton) *)
39 (* Maximal term depth : 3 ( 2 average) *)
43 (* -------------------------------------------------------------------------- *)
45 (* ----Include boolean algebra axioms for equality formulation *)
47 (* Inclusion of: Axioms/BOO004-0.ax *)
49 (* -------------------------------------------------------------------------- *)
51 (* File : BOO004-0 : TPTP v3.7.0. Released v1.0.0. *)
53 (* Domain : Boolean Algebra *)
55 (* Axioms : Boolean algebra (equality) axioms *)
57 (* Version : [Ver94] (equality) axioms. *)
61 (* Refs : [Ver94] Veroff (1994), Problem Set *)
63 (* Source : [Ver94] *)
69 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
71 (* Number of atoms : 8 ( 8 equality) *)
73 (* Maximal clause size : 1 ( 1 average) *)
75 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
77 (* Number of functors : 5 ( 2 constant; 0-2 arity) *)
79 (* Number of variables : 14 ( 0 singleton) *)
81 (* Maximal term depth : 3 ( 2 average) *)
85 (* -------------------------------------------------------------------------- *)
87 (* -------------------------------------------------------------------------- *)
89 (* -------------------------------------------------------------------------- *)
90 ntheorem prove_a_inverse_is_b:
91 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
93 ∀add:∀_:Univ.∀_:Univ.Univ.
94 ∀additive_identity:Univ.
96 ∀inverse:∀_:Univ.Univ.
97 ∀multiplicative_identity:Univ.
98 ∀multiply:∀_:Univ.∀_:Univ.Univ.
99 ∀H0:eq Univ (multiply a b) additive_identity.
100 ∀H1:eq Univ (add a b) multiplicative_identity.
101 ∀H2:∀X:Univ.eq Univ (multiply X (inverse X)) additive_identity.
102 ∀H3:∀X:Univ.eq Univ (add X (inverse X)) multiplicative_identity.
103 ∀H4:∀X:Univ.eq Univ (multiply X multiplicative_identity) X.
104 ∀H5:∀X:Univ.eq Univ (add X additive_identity) X.
105 ∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
106 ∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
107 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
108 ∀H9:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ b (inverse a))
116 #additive_identity ##.
119 #multiplicative_identity ##.
131 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9 ##;
132 ntry (nassumption) ##;
135 (* -------------------------------------------------------------------------- *)