1 include "logic/equality.ma".
3 (* Inclusion of: BOO030-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : BOO030-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Boolean Algebra *)
11 (* Problem : Independence of a BA 2-basis by majority reduction. *)
13 (* Version : [MP96] (equality) axioms : Especial. *)
15 (* English : This shows that the self-dual 2-basis for Boolean algebra *)
17 (* (majority reduction) of problem DUAL-BA-5 is independent, *)
19 (* in particular, that half of the 2-basis is not a basis. *)
21 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
23 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
25 (* Source : [McC98] *)
27 (* Names : DUAL-BA-6 [MP96] *)
29 (* Status : Satisfiable *)
31 (* Rating : 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 0.67 v2.3.0, 1.00 v2.2.1 *)
33 (* Syntax : Number of clauses : 7 ( 0 non-Horn; 7 unit; 1 RR) *)
35 (* Number of atoms : 7 ( 7 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 4 ( 1 constant; 0-2 arity) *)
43 (* Number of variables : 14 ( 5 singleton) *)
45 (* Maximal term depth : 4 ( 2 average) *)
47 (* Comments : There is a 2-element model. *)
49 (* -------------------------------------------------------------------------- *)
51 (* ----Properties L1, L3, and B1 of Boolean Algebra: *)
53 (* ----Majority reduction properties: *)
55 (* ----Denial of a property of Boolean Algebra. *)
56 ntheorem prove_inverse_involution:
57 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
59 ∀add:∀_:Univ.∀_:Univ.Univ.
60 ∀inverse:∀_:Univ.Univ.
61 ∀multiply:∀_:Univ.∀_:Univ.Univ.
62 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply (add (multiply X Y) Y) (add X Y)) Y.
63 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (multiply (add (multiply X X) Y) (add X X)) X.
64 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply (add (multiply X Y) X) (add X Y)) X.
65 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X Y) (add X (inverse Y))) X.
66 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
67 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.eq Univ (inverse (inverse a)) a)
83 nauto by H0,H1,H2,H3,H4,H5 ##;
84 ntry (nassumption) ##;
87 (* -------------------------------------------------------------------------- *)