1 include "logic/equality.ma".
3 (* Inclusion of: BOO033-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : BOO033-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Boolean Algebra *)
11 (* Problem : Independence of a system of Boolean algebra. *)
13 (* Version : [MP96] (equality) axioms : Especial. *)
15 (* English : This is part of a proof that a self-dual 3-basis for *)
17 (* Boolean algebra is independent. *)
19 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
21 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
23 (* Source : [McC98] *)
25 (* Names : DUAL-BA-10 [MP96] *)
27 (* Status : Satisfiable *)
29 (* Rating : 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.4.0, 0.67 v2.3.0, 1.00 v2.2.1 *)
31 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 1 RR) *)
33 (* Number of atoms : 8 ( 8 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 4 ( 1 constant; 0-2 arity) *)
41 (* Number of variables : 17 ( 5 singleton) *)
43 (* Maximal term depth : 4 ( 3 average) *)
45 (* Comments : There is a model of size 2. *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Self-dual distributivity: *)
51 (* ----3 properties of Boolean algebra and the corresponding duals. *)
53 (* ----Majority polynomials: *)
55 (* ----A simple propery of Boolean Algebra fails to hold. *)
56 ntheorem prove_inverse_involution:
57 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
59 ∀add:∀_:Univ.∀_:Univ.Univ.
60 ∀inverse:∀_:Univ.Univ.
61 ∀multiply:∀_:Univ.∀_:Univ.Univ.
62 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply (add (multiply X Y) Y) (add X Y)) Y.
63 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (multiply (add (multiply X X) Y) (add X X)) X.
64 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply (add (multiply X Y) X) (add X Y)) X.
65 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X (inverse X)) Y) Y.
66 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
67 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.
68 ∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) (add (multiply Y Z) (multiply Z X))) (multiply (add X Y) (multiply (add Y Z) (add Z X))).eq Univ (inverse (inverse a)) a)
85 nauto by H0,H1,H2,H3,H4,H5,H6 ##;
86 ntry (nassumption) ##;
89 (* -------------------------------------------------------------------------- *)