1 include "logic/equality.ma".
3 (* Inclusion of: BOO068-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : BOO068-1 : TPTP v3.7.0. Released v2.6.0. *)
9 (* Domain : Boolean Algebra (Ternary) *)
11 (* Problem : Ternary Boolean Algebra Single axiom is complete, part 2 *)
13 (* Version : [MP96] (equality) axioms. *)
17 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
19 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v3.1.0, 0.11 v2.7.0, 0.00 v2.6.0 *)
29 (* Syntax : Number of clauses : 2 ( 0 non-Horn; 2 unit; 1 RR) *)
31 (* Number of atoms : 2 ( 2 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 4 ( 2 constant; 0-3 arity) *)
39 (* Number of variables : 7 ( 0 singleton) *)
41 (* Maximal term depth : 5 ( 2 average) *)
43 (* Comments : A UEQ part of BOO035-1 *)
45 (* -------------------------------------------------------------------------- *)
46 ntheorem prove_tba_axioms_2:
47 (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
50 ∀inverse:∀_:Univ.Univ.
51 ∀multiply:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
52 ∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (multiply (multiply A (inverse A) B) (inverse (multiply (multiply C D E) F (multiply C D G))) (multiply D (multiply G F E) C)) B.eq Univ (multiply b a a) a)
68 ntry (nassumption) ##;
71 (* -------------------------------------------------------------------------- *)