1 include "logic/equality.ma".
3 (* Inclusion of: GRP114-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP114-1 : TPTP v3.7.0. Released v1.2.0. *)
9 (* Domain : Group Theory *)
11 (* Problem : Product of positive and negative parts of X equals X *)
13 (* Version : [MOW76] (equality) axioms : Augmented. *)
15 (* English : Prove that for each element X in a group, X is equal to the *)
17 (* product of its positive part (the union with the identity) *)
19 (* and its negative part (the intersection with the identity). *)
21 (* Refs : [Wos94] Wos (1994), Challenge in Group Theory *)
23 (* Source : [Wos94] *)
25 (* Names : - [Wos94] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.33 v3.4.0, 0.25 v3.3.0, 0.29 v3.1.0, 0.22 v2.7.0, 0.36 v2.6.0, 0.17 v2.5.0, 0.00 v2.4.0, 0.00 v2.2.1, 0.44 v2.2.0, 0.57 v2.1.0, 0.86 v2.0.0 *)
31 (* Syntax : Number of clauses : 21 ( 0 non-Horn; 21 unit; 2 RR) *)
33 (* Number of atoms : 21 ( 21 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 8 ( 2 constant; 0-2 arity) *)
41 (* Number of variables : 38 ( 2 singleton) *)
43 (* Maximal term depth : 3 ( 2 average) *)
45 (* Comments : I know some of the axioms are redundant, and have put comments *)
47 (* to that effect. However, I don't know how to make a complete *)
49 (* standard axiomatisation for the union and intersection axioms. *)
51 (* -------------------------------------------------------------------------- *)
53 (* ----Include the axioms for named groups *)
55 (* Inclusion of: Axioms/GRP004-0.ax *)
57 (* -------------------------------------------------------------------------- *)
59 (* File : GRP004-0 : TPTP v3.7.0. Released v1.0.0. *)
61 (* Domain : Group Theory *)
63 (* Axioms : Group theory (equality) axioms *)
65 (* Version : [MOW76] (equality) axioms : *)
67 (* Reduced > Complete. *)
71 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
73 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
81 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
83 (* Number of atoms : 3 ( 3 equality) *)
85 (* Maximal clause size : 1 ( 1 average) *)
87 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
89 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
91 (* Number of variables : 5 ( 0 singleton) *)
93 (* Maximal term depth : 3 ( 2 average) *)
95 (* Comments : [MOW76] also contains redundant right_identity and *)
97 (* right_inverse axioms. *)
99 (* : These axioms are also used in [Wos88] p.186, also with *)
101 (* right_identity and right_inverse. *)
103 (* -------------------------------------------------------------------------- *)
105 (* ----For any x and y in the group x*y is also in the group. No clause *)
107 (* ----is needed here since this is an instance of reflexivity *)
109 (* ----There exists an identity element *)
111 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
113 (* ----= identity. *)
115 (* ----The operation '*' is associative *)
117 (* -------------------------------------------------------------------------- *)
119 (* -------------------------------------------------------------------------- *)
121 (* ----This axiom is a lemma *)
123 (* ----This axiom is a lemma *)
125 (* ----This axiom is a lemma *)
126 ntheorem prove_product:
127 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
130 ∀intersection:∀_:Univ.∀_:Univ.Univ.
131 ∀inverse:∀_:Univ.Univ.
132 ∀multiply:∀_:Univ.∀_:Univ.Univ.
133 ∀negative_part:∀_:Univ.Univ.
134 ∀positive_part:∀_:Univ.Univ.
135 ∀union:∀_:Univ.∀_:Univ.Univ.
136 ∀H0:∀X:Univ.eq Univ (negative_part X) (intersection X identity).
137 ∀H1:∀X:Univ.eq Univ (positive_part X) (union X identity).
138 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (intersection Y Z) X) (intersection (multiply Y X) (multiply Z X)).
139 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (union Y Z) X) (union (multiply Y X) (multiply Z X)).
140 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (intersection Y Z)) (intersection (multiply X Y) (multiply X Z)).
141 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (union Y Z)) (union (multiply X Y) (multiply X Z)).
142 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (intersection (union X Y) Y) Y.
143 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (union (intersection X Y) Y) Y.
144 ∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (union X (union Y Z)) (union (union X Y) Z).
145 ∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (intersection X (intersection Y Z)) (intersection (intersection X Y) Z).
146 ∀H10:∀X:Univ.∀Y:Univ.eq Univ (union X Y) (union Y X).
147 ∀H11:∀X:Univ.∀Y:Univ.eq Univ (intersection X Y) (intersection Y X).
148 ∀H12:∀X:Univ.eq Univ (union X X) X.
149 ∀H13:∀X:Univ.eq Univ (intersection X X) X.
150 ∀H14:∀X:Univ.∀Y:Univ.eq Univ (inverse (multiply X Y)) (multiply (inverse Y) (inverse X)).
151 ∀H15:∀X:Univ.eq Univ (inverse (inverse X)) X.
152 ∀H16:eq Univ (inverse identity) identity.
153 ∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
154 ∀H18:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
155 ∀H19:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (multiply (positive_part a) (negative_part a)) a)
189 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19 ##;
190 ntry (nassumption) ##;
193 (* -------------------------------------------------------------------------- *)