1 include "logic/equality.ma".
3 (* Inclusion of: COL004-3.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL004-3 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Find combinator equivalent to U from S and K. *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* Theorem formulation : The combination is provided and checked. *)
17 (* English : Construct from S and K alone a combinator that behaves as the *)
19 (* combinator U does, where ((Sx)y)z = (xz)(yz), (Kx)y = x, *)
21 (* (Ux)y = y((xx)y). *)
23 (* Refs : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.33 v3.4.0, 0.38 v3.3.0, 0.21 v3.1.0, 0.22 v2.7.0, 0.27 v2.6.0, 0.17 v2.5.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.38 v2.0.0 *)
33 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
35 (* Number of atoms : 3 ( 3 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 5 ( 4 constant; 0-2 arity) *)
43 (* Number of variables : 5 ( 1 singleton) *)
45 (* Maximal term depth : 9 ( 4 average) *)
49 (* -------------------------------------------------------------------------- *)
51 (* ----This is the U equivalent *)
52 ntheorem prove_u_combinator:
53 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
54 ∀apply:∀_:Univ.∀_:Univ.Univ.
59 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply k X) Y) X.
60 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).eq Univ (apply (apply (apply (apply s (apply k (apply s (apply (apply s k) k)))) (apply (apply s (apply (apply s k) k)) (apply (apply s k) k))) x) y) (apply y (apply (apply x x) y)))
74 ntry (nassumption) ##;
77 (* -------------------------------------------------------------------------- *)