1 include "logic/equality.ma".
3 (* Inclusion of: COL029-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL029-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for U *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The strong fixed point property holds for the set *)
17 (* P consisting of the combinator U, where (Ux)y = y((xx)y). *)
19 (* Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi *)
21 (* : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem *)
23 (* : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
25 (* : [MW88] McCune & Wos (1988), Some Fixed Point Problems in Comb *)
27 (* : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St *)
31 (* Names : - [MW88] *)
33 (* : Question 1 [Wos93] *)
35 (* Status : Unsatisfiable *)
37 (* Rating : 0.00 v2.0.0 *)
39 (* Syntax : Number of clauses : 2 ( 0 non-Horn; 2 unit; 1 RR) *)
41 (* Number of atoms : 2 ( 2 equality) *)
43 (* Maximal clause size : 1 ( 1 average) *)
45 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
47 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
49 (* Number of variables : 3 ( 0 singleton) *)
51 (* Maximal term depth : 4 ( 4 average) *)
55 (* -------------------------------------------------------------------------- *)
56 ntheorem prove_fixed_point:
57 (∀Univ:Type.∀X:Univ.∀Y:Univ.
58 ∀apply:∀_:Univ.∀_:Univ.Univ.
61 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply u X) Y) (apply Y (apply (apply X X) Y)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
70 napply (ex_intro ? ? ? ?) ##[
74 ntry (nassumption) ##;
77 (* -------------------------------------------------------------------------- *)