1 include "logic/equality.ma".
3 (* Inclusion of: COL030-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL030-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for S and L *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The strong fixed point property holds for the set *)
17 (* P consisting of the combinators S and L, where ((Sx)y)z *)
19 (* = (xz)(yz), (Lx)y = x(yy). *)
21 (* Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi *)
23 (* : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem *)
25 (* : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
27 (* : [MW88] McCune & Wos (1988), Some Fixed Point Problems in Comb *)
31 (* Names : - [MW88] *)
33 (* Status : Unsatisfiable *)
35 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.14 v3.1.0, 0.11 v2.7.0, 0.09 v2.6.0, 0.17 v2.5.0, 0.00 v2.2.1, 0.11 v2.2.0, 0.00 v2.1.0, 0.13 v2.0.0 *)
37 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
39 (* Number of atoms : 3 ( 3 equality) *)
41 (* Maximal clause size : 1 ( 1 average) *)
43 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
45 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
47 (* Number of variables : 6 ( 0 singleton) *)
49 (* Maximal term depth : 4 ( 3 average) *)
53 (* -------------------------------------------------------------------------- *)
54 ntheorem prove_fixed_point:
55 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
56 ∀apply:∀_:Univ.∀_:Univ.Univ.
60 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (apply (apply l X) Y) (apply X (apply Y Y)).
61 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply s X) Y) Z) (apply (apply X Z) (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
73 napply (ex_intro ? ? ? ?) ##[
77 ntry (nassumption) ##;
80 (* -------------------------------------------------------------------------- *)