1 include "logic/equality.ma".
3 (* Inclusion of: COL043-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL043-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Strong fixed point for B and H *)
13 (* Version : [WM88] (equality) axioms. *)
15 (* English : The strong fixed point property holds for the set *)
17 (* P consisting of the combinators B and H, where ((Bx)y)z *)
19 (* = x(yz), ((Hx)y)z = ((xy)z)y. *)
21 (* Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi *)
23 (* : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem *)
25 (* : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq *)
27 (* : [MW88] McCune & Wos (1988), Some Fixed Point Problems in Comb *)
29 (* : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit *)
31 (* : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St *)
35 (* Names : - [MW88] *)
39 (* : Question 5 [Wos93] *)
41 (* Status : Unsatisfiable *)
43 (* Rating : 0.78 v3.4.0, 0.88 v3.3.0, 0.86 v3.1.0, 0.89 v2.7.0, 0.91 v2.6.0, 0.83 v2.5.0, 0.75 v2.4.0, 0.67 v2.3.0, 1.00 v2.0.0 *)
45 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
47 (* Number of atoms : 3 ( 3 equality) *)
49 (* Maximal clause size : 1 ( 1 average) *)
51 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
53 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
55 (* Number of variables : 7 ( 0 singleton) *)
57 (* Maximal term depth : 4 ( 4 average) *)
61 (* -------------------------------------------------------------------------- *)
62 ntheorem prove_fixed_point:
63 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
64 ∀apply:∀_:Univ.∀_:Univ.Univ.
68 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply h X) Y) Z) (apply (apply (apply X Y) Z) Y).
69 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (apply (apply (apply b X) Y) Z) (apply X (apply Y Z)).∃Y:Univ.eq Univ (apply Y (f Y)) (apply (f Y) (apply Y (f Y))))
81 napply (ex_intro ? ? ? ?) ##[
85 ntry (nassumption) ##;
88 (* -------------------------------------------------------------------------- *)