1 include "logic/equality.ma".
3 (* Inclusion of: COL051-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : COL051-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Combinatory Logic *)
11 (* Problem : Egocentric mocking bird? *)
13 (* Version : Especial. *)
15 (* English : There exists a mocking bird. For all birds x and y, there *)
17 (* exists a bird z that composes x with y for all birds w. Prove *)
19 (* that there exists a bird x that is fond of itself. *)
21 (* Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi *)
25 (* Names : bird2.ver1.in [ANL] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.00 v2.0.0 *)
31 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
33 (* Number of atoms : 3 ( 3 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
41 (* Number of variables : 5 ( 0 singleton) *)
43 (* Maximal term depth : 3 ( 2 average) *)
47 (* -------------------------------------------------------------------------- *)
49 (* ---- There exists a mocking bird (Mock). *)
51 (* ---- TEx FAy [response(x,y) = response(y,y)]. *)
53 (* ---- response(Mock,y) = response(y,y). *)
55 (* ---- For all birds x and y, there exists a bird z that composes *)
57 (* ---- x with y for all birds w. *)
59 (* ---- FAx FAy TEz FAw [response(z,w) = response(x,response(y,w))] *)
61 (* ---- response(comp(x,y),w) = response(x,response(y,w)). *)
63 (* ---- Hypothesis: There exists a bird x that is fond of itself. *)
65 (* ---- -TEx [response(x,x) = x]. *)
67 (* ---- FAx -[response(x,x) = x]. *)
68 ntheorem prove_the_bird_exists:
69 (∀Univ:Type.∀W:Univ.∀X:Univ.∀Y:Univ.
70 ∀compose:∀_:Univ.∀_:Univ.Univ.
72 ∀response:∀_:Univ.∀_:Univ.Univ.
73 ∀H0:∀W:Univ.∀X:Univ.∀Y:Univ.eq Univ (response (compose X Y) W) (response X (response Y W)).
74 ∀H1:∀Y:Univ.eq Univ (response mocking_bird Y) (response Y Y).∃X:Univ.eq Univ (response X X) X)
85 napply (ex_intro ? ? ? ?) ##[
89 ntry (nassumption) ##;
92 (* -------------------------------------------------------------------------- *)