1 include "logic/equality.ma".
3 (* Inclusion of: GRP172-2.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP172-2 : TPTP v3.7.0. Bugfixed v1.2.1. *)
9 (* Domain : Group Theory (Lattice Ordered) *)
11 (* Problem : Negative elements form a semigroup *)
13 (* Version : [Fuc94] (equality) axioms. *)
15 (* Theorem formulation : Using different definitions for =<. *)
19 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
21 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
23 (* Source : [Sch95] *)
25 (* Names : p04d [Sch95] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.00 v2.2.1, 0.11 v2.2.0, 0.14 v2.1.0, 0.14 v2.0.0 *)
31 (* Syntax : Number of clauses : 18 ( 0 non-Horn; 18 unit; 3 RR) *)
33 (* Number of atoms : 18 ( 18 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 7 ( 3 constant; 0-2 arity) *)
41 (* Number of variables : 33 ( 2 singleton) *)
43 (* Maximal term depth : 3 ( 2 average) *)
45 (* Comments : ORDERING LPO inverse > product > greatest_lower_bound > *)
47 (* least_upper_bound > identity > a > b *)
49 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
51 (* -------------------------------------------------------------------------- *)
53 (* ----Include equality group theory axioms *)
55 (* Inclusion of: Axioms/GRP004-0.ax *)
57 (* -------------------------------------------------------------------------- *)
59 (* File : GRP004-0 : TPTP v3.7.0. Released v1.0.0. *)
61 (* Domain : Group Theory *)
63 (* Axioms : Group theory (equality) axioms *)
65 (* Version : [MOW76] (equality) axioms : *)
67 (* Reduced > Complete. *)
71 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
73 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
81 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
83 (* Number of atoms : 3 ( 3 equality) *)
85 (* Maximal clause size : 1 ( 1 average) *)
87 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
89 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
91 (* Number of variables : 5 ( 0 singleton) *)
93 (* Maximal term depth : 3 ( 2 average) *)
95 (* Comments : [MOW76] also contains redundant right_identity and *)
97 (* right_inverse axioms. *)
99 (* : These axioms are also used in [Wos88] p.186, also with *)
101 (* right_identity and right_inverse. *)
103 (* -------------------------------------------------------------------------- *)
105 (* ----For any x and y in the group x*y is also in the group. No clause *)
107 (* ----is needed here since this is an instance of reflexivity *)
109 (* ----There exists an identity element *)
111 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
113 (* ----= identity. *)
115 (* ----The operation '*' is associative *)
117 (* -------------------------------------------------------------------------- *)
119 (* ----Include Lattice ordered group (equality) axioms *)
121 (* Inclusion of: Axioms/GRP004-2.ax *)
123 (* -------------------------------------------------------------------------- *)
125 (* File : GRP004-2 : TPTP v3.7.0. Bugfixed v1.2.0. *)
127 (* Domain : Group Theory (Lattice Ordered) *)
129 (* Axioms : Lattice ordered group (equality) axioms *)
131 (* Version : [Fuc94] (equality) axioms. *)
135 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
137 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
139 (* Source : [Sch95] *)
145 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
147 (* Number of atoms : 12 ( 12 equality) *)
149 (* Maximal clause size : 1 ( 1 average) *)
151 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
153 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
155 (* Number of variables : 28 ( 2 singleton) *)
157 (* Maximal term depth : 3 ( 2 average) *)
159 (* Comments : Requires GRP004-0.ax *)
161 (* -------------------------------------------------------------------------- *)
163 (* ----Specification of the least upper bound and greatest lower bound *)
165 (* ----Monotony of multiply *)
167 (* -------------------------------------------------------------------------- *)
169 (* -------------------------------------------------------------------------- *)
171 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
174 ∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
176 ∀inverse:∀_:Univ.Univ.
177 ∀least_upper_bound:∀_:Univ.∀_:Univ.Univ.
178 ∀multiply:∀_:Univ.∀_:Univ.Univ.
179 ∀H0:eq Univ (greatest_lower_bound identity b) identity.
180 ∀H1:eq Univ (greatest_lower_bound identity a) identity.
181 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
182 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
183 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
184 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
185 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
186 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
187 ∀H8:∀X:Univ.eq Univ (greatest_lower_bound X X) X.
188 ∀H9:∀X:Univ.eq Univ (least_upper_bound X X) X.
189 ∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
190 ∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
191 ∀H12:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
192 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
193 ∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
194 ∀H15:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
195 ∀H16:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound identity (multiply a b)) (multiply a b))
203 #greatest_lower_bound ##.
206 #least_upper_bound ##.
225 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16 ##;
226 ntry (nassumption) ##;
229 (* -------------------------------------------------------------------------- *)