1 include "logic/equality.ma".
3 (* Inclusion of: GRP182-3.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP182-3 : TPTP v3.7.0. Bugfixed v1.2.1. *)
9 (* Domain : Group Theory (Lattice Ordered) *)
11 (* Problem : Positive part of the negative part is identity *)
13 (* Version : [Fuc94] (equality) axioms. *)
15 (* Theorem formulation : Dual. *)
19 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
21 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.00 v2.0.0 *)
31 (* Syntax : Number of clauses : 16 ( 0 non-Horn; 16 unit; 1 RR) *)
33 (* Number of atoms : 16 ( 16 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 6 ( 2 constant; 0-2 arity) *)
41 (* Number of variables : 33 ( 2 singleton) *)
43 (* Maximal term depth : 3 ( 2 average) *)
45 (* Comments : ORDERING LPO inverse > product > greatest_lower_bound > *)
47 (* least_upper_bound > identity > a *)
49 (* : ORDERING LPO greatest_lower_bound > least_upper_bound > *)
51 (* inverse > product > identity > a *)
53 (* : This is a standardized version of the problem that appears in *)
57 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
59 (* -------------------------------------------------------------------------- *)
61 (* ----Include equality group theory axioms *)
63 (* Inclusion of: Axioms/GRP004-0.ax *)
65 (* -------------------------------------------------------------------------- *)
67 (* File : GRP004-0 : TPTP v3.7.0. Released v1.0.0. *)
69 (* Domain : Group Theory *)
71 (* Axioms : Group theory (equality) axioms *)
73 (* Version : [MOW76] (equality) axioms : *)
75 (* Reduced > Complete. *)
79 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
81 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
89 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
91 (* Number of atoms : 3 ( 3 equality) *)
93 (* Maximal clause size : 1 ( 1 average) *)
95 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
97 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
99 (* Number of variables : 5 ( 0 singleton) *)
101 (* Maximal term depth : 3 ( 2 average) *)
103 (* Comments : [MOW76] also contains redundant right_identity and *)
105 (* right_inverse axioms. *)
107 (* : These axioms are also used in [Wos88] p.186, also with *)
109 (* right_identity and right_inverse. *)
111 (* -------------------------------------------------------------------------- *)
113 (* ----For any x and y in the group x*y is also in the group. No clause *)
115 (* ----is needed here since this is an instance of reflexivity *)
117 (* ----There exists an identity element *)
119 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
121 (* ----= identity. *)
123 (* ----The operation '*' is associative *)
125 (* -------------------------------------------------------------------------- *)
127 (* ----Include Lattice ordered group (equality) axioms *)
129 (* Inclusion of: Axioms/GRP004-2.ax *)
131 (* -------------------------------------------------------------------------- *)
133 (* File : GRP004-2 : TPTP v3.7.0. Bugfixed v1.2.0. *)
135 (* Domain : Group Theory (Lattice Ordered) *)
137 (* Axioms : Lattice ordered group (equality) axioms *)
139 (* Version : [Fuc94] (equality) axioms. *)
143 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
145 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
147 (* Source : [Sch95] *)
153 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
155 (* Number of atoms : 12 ( 12 equality) *)
157 (* Maximal clause size : 1 ( 1 average) *)
159 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
161 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
163 (* Number of variables : 28 ( 2 singleton) *)
165 (* Maximal term depth : 3 ( 2 average) *)
167 (* Comments : Requires GRP004-0.ax *)
169 (* -------------------------------------------------------------------------- *)
171 (* ----Specification of the least upper bound and greatest lower bound *)
173 (* ----Monotony of multiply *)
175 (* -------------------------------------------------------------------------- *)
177 (* -------------------------------------------------------------------------- *)
179 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
181 ∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
183 ∀inverse:∀_:Univ.Univ.
184 ∀least_upper_bound:∀_:Univ.∀_:Univ.Univ.
185 ∀multiply:∀_:Univ.∀_:Univ.Univ.
186 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
187 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
188 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
189 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
190 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
191 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
192 ∀H6:∀X:Univ.eq Univ (greatest_lower_bound X X) X.
193 ∀H7:∀X:Univ.eq Univ (least_upper_bound X X) X.
194 ∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
195 ∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
196 ∀H10:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
197 ∀H11:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
198 ∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
199 ∀H13:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
200 ∀H14:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (greatest_lower_bound identity (least_upper_bound a identity)) identity)
207 #greatest_lower_bound ##.
210 #least_upper_bound ##.
227 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14 ##;
228 ntry (nassumption) ##;
231 (* -------------------------------------------------------------------------- *)