1 include "logic/equality.ma".
3 (* Inclusion of: GRP188-2.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP188-2 : TPTP v3.7.0. Bugfixed v1.2.1. *)
9 (* Domain : Group Theory (Lattice Ordered) *)
11 (* Problem : Consequence of lattice theory *)
13 (* Version : [Fuc94] (equality) axioms : Augmented. *)
17 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
19 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
21 (* Source : [Sch95] *)
23 (* Names : p38a [Sch95] *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.00 v2.0.0 *)
29 (* Syntax : Number of clauses : 19 ( 0 non-Horn; 19 unit; 2 RR) *)
31 (* Number of atoms : 19 ( 19 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 7 ( 3 constant; 0-2 arity) *)
39 (* Number of variables : 36 ( 2 singleton) *)
41 (* Maximal term depth : 3 ( 2 average) *)
43 (* Comments : ORDERING LPO greatest_lower_bound > least_upper_bound > *)
45 (* inverse > product > identity > a > b *)
47 (* Bugfixes : v1.2.1 - Duplicate axioms in GRP004-2.ax removed. *)
49 (* -------------------------------------------------------------------------- *)
51 (* ----Include equality group theory axioms *)
53 (* Inclusion of: Axioms/GRP004-0.ax *)
55 (* -------------------------------------------------------------------------- *)
57 (* File : GRP004-0 : TPTP v3.7.0. Released v1.0.0. *)
59 (* Domain : Group Theory *)
61 (* Axioms : Group theory (equality) axioms *)
63 (* Version : [MOW76] (equality) axioms : *)
65 (* Reduced > Complete. *)
69 (* Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a *)
71 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
79 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
81 (* Number of atoms : 3 ( 3 equality) *)
83 (* Maximal clause size : 1 ( 1 average) *)
85 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
87 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
89 (* Number of variables : 5 ( 0 singleton) *)
91 (* Maximal term depth : 3 ( 2 average) *)
93 (* Comments : [MOW76] also contains redundant right_identity and *)
95 (* right_inverse axioms. *)
97 (* : These axioms are also used in [Wos88] p.186, also with *)
99 (* right_identity and right_inverse. *)
101 (* -------------------------------------------------------------------------- *)
103 (* ----For any x and y in the group x*y is also in the group. No clause *)
105 (* ----is needed here since this is an instance of reflexivity *)
107 (* ----There exists an identity element *)
109 (* ----For any x in the group, there exists an element y such that x*y = y*x *)
111 (* ----= identity. *)
113 (* ----The operation '*' is associative *)
115 (* -------------------------------------------------------------------------- *)
117 (* ----Include Lattice ordered group (equality) axioms *)
119 (* Inclusion of: Axioms/GRP004-2.ax *)
121 (* -------------------------------------------------------------------------- *)
123 (* File : GRP004-2 : TPTP v3.7.0. Bugfixed v1.2.0. *)
125 (* Domain : Group Theory (Lattice Ordered) *)
127 (* Axioms : Lattice ordered group (equality) axioms *)
129 (* Version : [Fuc94] (equality) axioms. *)
133 (* Refs : [Fuc94] Fuchs (1994), The Application of Goal-Orientated Heuri *)
135 (* : [Sch95] Schulz (1995), Explanation Based Learning for Distribu *)
137 (* Source : [Sch95] *)
143 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 0 RR) *)
145 (* Number of atoms : 12 ( 12 equality) *)
147 (* Maximal clause size : 1 ( 1 average) *)
149 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
151 (* Number of functors : 3 ( 0 constant; 2-2 arity) *)
153 (* Number of variables : 28 ( 2 singleton) *)
155 (* Maximal term depth : 3 ( 2 average) *)
157 (* Comments : Requires GRP004-0.ax *)
159 (* -------------------------------------------------------------------------- *)
161 (* ----Specification of the least upper bound and greatest lower bound *)
163 (* ----Monotony of multiply *)
165 (* -------------------------------------------------------------------------- *)
167 (* -------------------------------------------------------------------------- *)
169 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
172 ∀greatest_lower_bound:∀_:Univ.∀_:Univ.Univ.
174 ∀inverse:∀_:Univ.Univ.
175 ∀least_upper_bound:∀_:Univ.∀_:Univ.Univ.
176 ∀multiply:∀_:Univ.∀_:Univ.Univ.
177 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (inverse (multiply X Y)) (multiply (inverse Y) (inverse X)).
178 ∀H1:∀X:Univ.eq Univ (inverse (inverse X)) X.
179 ∀H2:eq Univ (inverse identity) identity.
180 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (greatest_lower_bound Y Z) X) (greatest_lower_bound (multiply Y X) (multiply Z X)).
181 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (least_upper_bound Y Z) X) (least_upper_bound (multiply Y X) (multiply Z X)).
182 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (greatest_lower_bound Y Z)) (greatest_lower_bound (multiply X Y) (multiply X Z)).
183 ∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (least_upper_bound Y Z)) (least_upper_bound (multiply X Y) (multiply X Z)).
184 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X (least_upper_bound X Y)) X.
185 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X (greatest_lower_bound X Y)) X.
186 ∀H9:∀X:Univ.eq Univ (greatest_lower_bound X X) X.
187 ∀H10:∀X:Univ.eq Univ (least_upper_bound X X) X.
188 ∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (least_upper_bound X (least_upper_bound Y Z)) (least_upper_bound (least_upper_bound X Y) Z).
189 ∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (greatest_lower_bound X (greatest_lower_bound Y Z)) (greatest_lower_bound (greatest_lower_bound X Y) Z).
190 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (least_upper_bound X Y) (least_upper_bound Y X).
191 ∀H14:∀X:Univ.∀Y:Univ.eq Univ (greatest_lower_bound X Y) (greatest_lower_bound Y X).
192 ∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
193 ∀H16:∀X:Univ.eq Univ (multiply (inverse X) X) identity.
194 ∀H17:∀X:Univ.eq Univ (multiply identity X) X.eq Univ (least_upper_bound b (least_upper_bound a b)) (least_upper_bound a b))
202 #greatest_lower_bound ##.
205 #least_upper_bound ##.
225 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17 ##;
226 ntry (nassumption) ##;
229 (* -------------------------------------------------------------------------- *)