1 include "logic/equality.ma".
3 (* Inclusion of: GRP195-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : GRP195-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Group Theory (Semigroups) *)
11 (* Problem : In semigroups, xyy=yyx -> (uv)^4 = u^4v^4. *)
13 (* Version : [MP96] (equality) axioms. *)
15 (* English : In semigroups, xyy=yyx -> uvuvuvuuv=uuuuvvvv. *)
17 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
19 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
21 (* Source : [McC98] *)
23 (* Names : CS-2 [MP96] *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.7.0, 0.09 v2.6.0, 0.17 v2.5.0, 0.00 v2.4.0, 0.00 v2.2.1 *)
29 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
31 (* Number of atoms : 3 ( 3 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 3 ( 2 constant; 0-2 arity) *)
39 (* Number of variables : 5 ( 0 singleton) *)
41 (* Maximal term depth : 8 ( 5 average) *)
43 (* Comments : The problem was originally posed for cancellative semigroups, *)
45 (* but Otter discovered that cancellation is not necessary. *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Include semigroups axioms *)
51 (* Inclusion of: Axioms/GRP008-0.ax *)
53 (* -------------------------------------------------------------------------- *)
55 (* File : GRP008-0 : TPTP v3.7.0. Released v2.2.0. *)
57 (* Domain : Group Theory (Semigroups) *)
59 (* Axioms : Semigroups axioms *)
61 (* Version : [MP96] (equality) axioms. *)
65 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
67 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
69 (* Source : [McC98] *)
75 (* Syntax : Number of clauses : 1 ( 0 non-Horn; 1 unit; 0 RR) *)
77 (* Number of atoms : 1 ( 1 equality) *)
79 (* Maximal clause size : 1 ( 1 average) *)
81 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
83 (* Number of functors : 1 ( 0 constant; 2-2 arity) *)
85 (* Number of variables : 3 ( 0 singleton) *)
87 (* Maximal term depth : 3 ( 3 average) *)
91 (* -------------------------------------------------------------------------- *)
93 (* ----Associativity: *)
95 (* -------------------------------------------------------------------------- *)
97 (* -------------------------------------------------------------------------- *)
101 (* ----Denial of conclusion: *)
103 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
106 ∀multiply:∀_:Univ.∀_:Univ.Univ.
107 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply X (multiply Y Y)) (multiply Y (multiply Y X)).
108 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).eq Univ (multiply a (multiply b (multiply a (multiply b (multiply a (multiply b (multiply a b))))))) (multiply a (multiply a (multiply a (multiply a (multiply b (multiply b (multiply b b))))))))
120 ntry (nassumption) ##;
123 (* -------------------------------------------------------------------------- *)