]> matita.cs.unibo.it Git - helm.git/blob - matitaB/matita/contribs/ng_TPTP/LAT007-1.ma
New management of justifications.
[helm.git] / matitaB / matita / contribs / ng_TPTP / LAT007-1.ma
1 include "logic/equality.ma".
2
3 (* Inclusion of: LAT007-1.p *)
4
5 (* -------------------------------------------------------------------------- *)
6
7 (*  File     : LAT007-1 : TPTP v3.7.0. Released v2.2.0. *)
8
9 (*  Domain   : Lattice Theory (Distributive lattices) *)
10
11 (*  Problem  : Sholander's basis for distributive lattices, part 5 (of 6). *)
12
13 (*  Version  : [MP96] (equality) axioms. *)
14
15 (*  English  : This is part of the proof that Sholanders 2-basis for *)
16
17 (*             distributive lattices is correct. Here we prove associativity  *)
18
19 (*             of join. *)
20
21 (*  Refs     : [McC98] McCune (1998), Email to G. Sutcliffe *)
22
23 (*           : [MP96]  McCune & Padmanabhan (1996), Automated Deduction in Eq *)
24
25 (*  Source   : [McC98] *)
26
27 (*  Names    : LT-3-e [MP96] *)
28
29 (*  Status   : Unsatisfiable *)
30
31 (*  Rating   : 0.33 v3.4.0, 0.38 v3.3.0, 0.36 v3.1.0, 0.33 v2.7.0, 0.27 v2.6.0, 0.17 v2.5.0, 0.00 v2.2.1 *)
32
33 (*  Syntax   : Number of clauses     :    3 (   0 non-Horn;   3 unit;   1 RR) *)
34
35 (*             Number of atoms       :    3 (   3 equality) *)
36
37 (*             Maximal clause size   :    1 (   1 average) *)
38
39 (*             Number of predicates  :    1 (   0 propositional; 2-2 arity) *)
40
41 (*             Number of functors    :    5 (   3 constant; 0-2 arity) *)
42
43 (*             Number of variables   :    5 (   1 singleton) *)
44
45 (*             Maximal term depth    :    3 (   3 average) *)
46
47 (*  Comments : *)
48
49 (* -------------------------------------------------------------------------- *)
50
51 (* ----Sholander's 2-basis for distributive lattices: *)
52
53 (* ----Denial of the conclusion: *)
54 ntheorem prove_associativity_of_join:
55  (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
56 ∀a:Univ.
57 ∀b:Univ.
58 ∀c:Univ.
59 ∀join:∀_:Univ.∀_:Univ.Univ.
60 ∀meet:∀_:Univ.∀_:Univ.Univ.
61 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y Z)) (join (meet Z X) (meet Y X)).
62 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join (join a b) c) (join a (join b c)))
63 .
64 #Univ ##.
65 #X ##.
66 #Y ##.
67 #Z ##.
68 #a ##.
69 #b ##.
70 #c ##.
71 #join ##.
72 #meet ##.
73 #H0 ##.
74 #H1 ##.
75 nauto by H0,H1 ##;
76 ntry (nassumption) ##;
77 nqed.
78
79 (* -------------------------------------------------------------------------- *)