1 include "logic/equality.ma".
3 (* Inclusion of: LAT007-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LAT007-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Lattice Theory (Distributive lattices) *)
11 (* Problem : Sholander's basis for distributive lattices, part 5 (of 6). *)
13 (* Version : [MP96] (equality) axioms. *)
15 (* English : This is part of the proof that Sholanders 2-basis for *)
17 (* distributive lattices is correct. Here we prove associativity *)
21 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
23 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
25 (* Source : [McC98] *)
27 (* Names : LT-3-e [MP96] *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.33 v3.4.0, 0.38 v3.3.0, 0.36 v3.1.0, 0.33 v2.7.0, 0.27 v2.6.0, 0.17 v2.5.0, 0.00 v2.2.1 *)
33 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR) *)
35 (* Number of atoms : 3 ( 3 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 5 ( 3 constant; 0-2 arity) *)
43 (* Number of variables : 5 ( 1 singleton) *)
45 (* Maximal term depth : 3 ( 3 average) *)
49 (* -------------------------------------------------------------------------- *)
51 (* ----Sholander's 2-basis for distributive lattices: *)
53 (* ----Denial of the conclusion: *)
54 ntheorem prove_associativity_of_join:
55 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
59 ∀join:∀_:Univ.∀_:Univ.Univ.
60 ∀meet:∀_:Univ.∀_:Univ.Univ.
61 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y Z)) (join (meet Z X) (meet Y X)).
62 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.eq Univ (join (join a b) c) (join a (join b c)))
76 ntry (nassumption) ##;
79 (* -------------------------------------------------------------------------- *)