1 include "logic/equality.ma".
3 (* Inclusion of: LAT010-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LAT010-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Lattice Theory *)
11 (* Problem : McKenzie's basis for the variety generated by N5. *)
13 (* Version : [MP96] (equality) axioms : Especial. *)
15 (* English : McKenzie's basis for the variety generated by N5. *)
17 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
19 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
21 (* Source : [McC98] *)
23 (* Names : LT-6 [MP96] *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.07 v3.2.0, 0.00 v2.5.0, 0.25 v2.4.0, 0.00 v2.2.1 *)
29 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 1 RR) *)
31 (* Number of atoms : 12 ( 12 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 6 ( 4 constant; 0-2 arity) *)
39 (* Number of variables : 27 ( 2 singleton) *)
41 (* Maximal term depth : 6 ( 3 average) *)
45 (* -------------------------------------------------------------------------- *)
47 (* ----Include lattice axioms *)
49 (* Inclusion of: Axioms/LAT001-0.ax *)
51 (* -------------------------------------------------------------------------- *)
53 (* File : LAT001-0 : TPTP v3.7.0. Released v1.0.0. *)
55 (* Domain : Lattice Theory *)
57 (* Axioms : Lattice theory (equality) axioms *)
59 (* Version : [McC88] (equality) axioms. *)
63 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
65 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
67 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
69 (* Source : [McC88] *)
75 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
77 (* Number of atoms : 8 ( 8 equality) *)
79 (* Maximal clause size : 1 ( 1 average) *)
81 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
83 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
85 (* Number of variables : 16 ( 2 singleton) *)
87 (* Maximal term depth : 3 ( 2 average) *)
91 (* -------------------------------------------------------------------------- *)
93 (* ----The following 8 clauses characterise lattices *)
95 (* -------------------------------------------------------------------------- *)
97 (* -------------------------------------------------------------------------- *)
101 (* ----Denial of the conclusion: *)
103 (∀Univ:Type.∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
108 ∀join:∀_:Univ.∀_:Univ.Univ.
109 ∀meet:∀_:Univ.∀_:Univ.Univ.
110 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (join X (meet Y Z)) (join Z (meet X Y))) (join (meet Z (join X (meet Y Z))) (meet X (join Y Z))).
111 ∀H1:∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y (join Z (meet X U)))) (meet (join X (meet Y (join X Z))) (join X (meet (join X Y) (join Z U)))).
112 ∀H2:∀U:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y (meet Z (join X U)))) (join (meet X (join Y (meet X Z))) (meet X (join (meet X Y) (meet Z U)))).
113 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).
114 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).
115 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
116 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
117 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
118 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
119 ∀H9:∀X:Univ.eq Univ (join X X) X.
120 ∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (meet (join b c) (join b d))) (meet (meet a (meet (join b c) (join b d))) (join (meet a (join b (meet c d))) (join (meet a c) (meet a d)))))
144 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
145 ntry (nassumption) ##;
148 (* -------------------------------------------------------------------------- *)