1 include "logic/equality.ma".
3 (* Inclusion of: LAT019-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LAT019-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Lattice Theory (Quasilattices) *)
11 (* Problem : In quasilattices, a distributive law implies its dual. *)
13 (* Version : [MP96] (equality) axioms. *)
17 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
19 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
21 (* Source : [McC98] *)
23 (* Names : QLT-2 [MP96] *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.5.0, 0.25 v2.4.0, 0.00 v2.2.1 *)
29 (* Syntax : Number of clauses : 10 ( 0 non-Horn; 10 unit; 1 RR) *)
31 (* Number of atoms : 10 ( 10 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 5 ( 3 constant; 0-2 arity) *)
39 (* Number of variables : 21 ( 0 singleton) *)
41 (* Maximal term depth : 4 ( 3 average) *)
45 (* -------------------------------------------------------------------------- *)
47 (* ----Include Quasilattice theory (equality) axioms *)
49 (* Inclusion of: Axioms/LAT004-0.ax *)
51 (* -------------------------------------------------------------------------- *)
53 (* File : LAT004-0 : TPTP v3.7.0. Released v2.2.0. *)
55 (* Domain : Lattice Theory (Quasilattices) *)
57 (* Axioms : Quasilattice theory (equality) axioms *)
59 (* Version : [McC98b] (equality) axioms. *)
63 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
65 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
67 (* Source : [McC98] *)
73 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
75 (* Number of atoms : 8 ( 8 equality) *)
77 (* Maximal clause size : 1 ( 1 average) *)
79 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
81 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
83 (* Number of variables : 18 ( 0 singleton) *)
85 (* Maximal term depth : 4 ( 2 average) *)
89 (* -------------------------------------------------------------------------- *)
91 (* ----Quasilattice theory: *)
93 (* -------------------------------------------------------------------------- *)
95 (* -------------------------------------------------------------------------- *)
97 (* ----A distributivity law: *)
99 (* ----Denial of the corresponding dual distributivity law: *)
100 ntheorem prove_distributivity_law_dual:
101 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
105 ∀join:∀_:Univ.∀_:Univ.Univ.
106 ∀meet:∀_:Univ.∀_:Univ.Univ.
107 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y Z)) (join (meet X Y) (meet X Z)).
108 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (join X (meet Y Z)) (join X Y)) (join X (meet Y Z)).
109 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (meet X (join Y Z)) (meet X Y)) (meet X (join Y Z)).
110 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).
111 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).
112 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
113 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
114 ∀H7:∀X:Univ.eq Univ (join X X) X.
115 ∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (join a (meet b c)) (meet (join a b) (join a c)))
135 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
136 ntry (nassumption) ##;
139 (* -------------------------------------------------------------------------- *)