1 include "logic/equality.ma".
3 (* Inclusion of: LAT022-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LAT022-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Lattice Theory (Quasilattices) *)
11 (* Problem : Self-dual modularity for quasilattices. *)
13 (* Version : [MP96] (equality) axioms. *)
17 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
19 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
21 (* : [McC95] McCune (1995), Four Challenge Problems in Equational L *)
23 (* Source : [McC98] *)
25 (* Names : QLT-5 [MP96] *)
27 (* : Problem C [McC95] *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.21 v3.1.0, 0.22 v2.7.0, 0.09 v2.6.0, 0.00 v2.5.0, 0.25 v2.4.0, 0.33 v2.3.0, 0.67 v2.2.1 *)
33 (* Syntax : Number of clauses : 10 ( 0 non-Horn; 10 unit; 1 RR) *)
35 (* Number of atoms : 10 ( 10 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 5 ( 3 constant; 0-2 arity) *)
43 (* Number of variables : 21 ( 0 singleton) *)
45 (* Maximal term depth : 4 ( 3 average) *)
49 (* -------------------------------------------------------------------------- *)
51 (* ----Include Quasilattice theory (equality) axioms *)
53 (* Inclusion of: Axioms/LAT004-0.ax *)
55 (* -------------------------------------------------------------------------- *)
57 (* File : LAT004-0 : TPTP v3.7.0. Released v2.2.0. *)
59 (* Domain : Lattice Theory (Quasilattices) *)
61 (* Axioms : Quasilattice theory (equality) axioms *)
63 (* Version : [McC98b] (equality) axioms. *)
67 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
69 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
71 (* Source : [McC98] *)
77 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
79 (* Number of atoms : 8 ( 8 equality) *)
81 (* Maximal clause size : 1 ( 1 average) *)
83 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
85 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
87 (* Number of variables : 18 ( 0 singleton) *)
89 (* Maximal term depth : 4 ( 2 average) *)
93 (* -------------------------------------------------------------------------- *)
95 (* ----Quasilattice theory: *)
97 (* -------------------------------------------------------------------------- *)
99 (* -------------------------------------------------------------------------- *)
101 (* ----Self-dual modularity: *)
103 (* ----Denial of ordinary equational modularity: *)
104 ntheorem prove_modularity:
105 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
109 ∀join:∀_:Univ.∀_:Univ.Univ.
110 ∀meet:∀_:Univ.∀_:Univ.Univ.
111 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (meet X Y) (meet Z (join X Y))) (meet (join X Y) (join Z (meet X Y))).
112 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (join X (meet Y Z)) (join X Y)) (join X (meet Y Z)).
113 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (meet X (join Y Z)) (meet X Y)) (meet X (join Y Z)).
114 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).
115 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).
116 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
117 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
118 ∀H7:∀X:Univ.eq Univ (join X X) X.
119 ∀H8:∀X:Univ.eq Univ (meet X X) X.eq Univ (meet a (join b (meet a c))) (join (meet a b) (meet a c)))
139 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8 ##;
140 ntry (nassumption) ##;
143 (* -------------------------------------------------------------------------- *)