1 include "logic/equality.ma".
3 (* Inclusion of: LAT038-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LAT038-1 : TPTP v3.7.0. Released v2.4.0. *)
9 (* Domain : Lattice Theory *)
11 (* Problem : Simplification rule in a distributive lattice *)
13 (* Version : [McC88] (equality) axioms. *)
15 (* English : In a distributive lattice, the following simplification rule *)
19 (* forall a, b, c, d: *)
21 (* if f(a v b, d) = f(c v b, d) and *)
23 (* f(a, d) & f(b, d) = f(c, d) & f(b, d) *)
25 (* then f(a,d) = f(c,d). *)
27 (* Refs : [DeN00] DeNivelle (2000), Email to G. Sutcliffe *)
29 (* [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
31 (* Source : [DeN00] *)
33 (* Names : lattice-hemi-simplif [DeN00] *)
35 (* Status : Unsatisfiable *)
37 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.43 v3.1.0, 0.44 v2.7.0, 0.36 v2.6.0, 0.17 v2.5.0, 0.25 v2.4.0 *)
39 (* Syntax : Number of clauses : 17 ( 0 non-Horn; 17 unit; 3 RR) *)
41 (* Number of atoms : 17 ( 17 equality) *)
43 (* Maximal clause size : 1 ( 1 average) *)
45 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
47 (* Number of functors : 8 ( 5 constant; 0-2 arity) *)
49 (* Number of variables : 30 ( 4 singleton) *)
51 (* Maximal term depth : 3 ( 2 average) *)
55 (* -------------------------------------------------------------------------- *)
57 (* ----Include lattice theory axioms *)
59 (* Inclusion of: Axioms/LAT001-0.ax *)
61 (* -------------------------------------------------------------------------- *)
63 (* File : LAT001-0 : TPTP v3.7.0. Released v1.0.0. *)
65 (* Domain : Lattice Theory *)
67 (* Axioms : Lattice theory (equality) axioms *)
69 (* Version : [McC88] (equality) axioms. *)
73 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
75 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
77 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
79 (* Source : [McC88] *)
85 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
87 (* Number of atoms : 8 ( 8 equality) *)
89 (* Maximal clause size : 1 ( 1 average) *)
91 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
93 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
95 (* Number of variables : 16 ( 2 singleton) *)
97 (* Maximal term depth : 3 ( 2 average) *)
101 (* -------------------------------------------------------------------------- *)
103 (* ----The following 8 clauses characterise lattices *)
105 (* -------------------------------------------------------------------------- *)
107 (* -------------------------------------------------------------------------- *)
109 (∀Univ:Type.∀U:Univ.∀V:Univ.∀W:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
114 ∀f:∀_:Univ.∀_:Univ.Univ.
115 ∀join:∀_:Univ.∀_:Univ.Univ.
116 ∀meet:∀_:Univ.∀_:Univ.Univ.
118 ∀H0:eq Univ (meet (f aa dd) (f bb dd)) (meet (f cc dd) (f bb dd)).
119 ∀H1:eq Univ (f (join aa bb) dd) (f (join cc bb) dd).
120 ∀H2:∀W:Univ.eq Univ (f W n0) n0.
121 ∀H3:∀U:Univ.∀V:Univ.∀W:Univ.eq Univ (f W (join U V)) (join (f W U) (f W V)).
122 ∀H4:∀W:Univ.eq Univ (f n0 W) n0.
123 ∀H5:∀U:Univ.∀V:Univ.∀W:Univ.eq Univ (f (join U V) W) (join (f U W) (f V W)).
124 ∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet X (join Y Z)) (join (meet X Y) (meet X Z)).
125 ∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join X (meet Y Z)) (meet (join X Y) (join X Z)).
126 ∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).
127 ∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).
128 ∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
129 ∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
130 ∀H12:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
131 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
132 ∀H14:∀X:Univ.eq Univ (join X X) X.
133 ∀H15:∀X:Univ.eq Univ (meet X X) X.eq Univ (f aa dd) (f cc dd))
166 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
167 ntry (nassumption) ##;
170 (* -------------------------------------------------------------------------- *)