1 include "logic/equality.ma".
3 (* Inclusion of: LAT044-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LAT044-1 : TPTP v3.7.0. Released v2.5.0. *)
9 (* Domain : Lattice Theory *)
11 (* Problem : Lattice weak orthomodular law from orthomodular lattice *)
13 (* Version : [McC88] (equality) axioms. *)
17 (* Refs : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
19 (* : [RW01] Rose & Wilkinson (2001), Application of Model Search *)
23 (* Names : eqp-c.in [RW01] *)
25 (* Status : Unsatisfiable *)
27 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.21 v3.2.0, 0.14 v3.1.0, 0.00 v2.7.0, 0.27 v2.6.0, 0.00 v2.5.0 *)
29 (* Syntax : Number of clauses : 15 ( 0 non-Horn; 15 unit; 1 RR) *)
31 (* Number of atoms : 15 ( 15 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 7 ( 4 constant; 0-2 arity) *)
39 (* Number of variables : 25 ( 2 singleton) *)
41 (* Maximal term depth : 4 ( 2 average) *)
45 (* -------------------------------------------------------------------------- *)
47 (* ----Include lattice axioms *)
49 (* Inclusion of: Axioms/LAT001-0.ax *)
51 (* -------------------------------------------------------------------------- *)
53 (* File : LAT001-0 : TPTP v3.7.0. Released v1.0.0. *)
55 (* Domain : Lattice Theory *)
57 (* Axioms : Lattice theory (equality) axioms *)
59 (* Version : [McC88] (equality) axioms. *)
63 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
65 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
67 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
69 (* Source : [McC88] *)
75 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
77 (* Number of atoms : 8 ( 8 equality) *)
79 (* Maximal clause size : 1 ( 1 average) *)
81 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
83 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
85 (* Number of variables : 16 ( 2 singleton) *)
87 (* Maximal term depth : 3 ( 2 average) *)
91 (* -------------------------------------------------------------------------- *)
93 (* ----The following 8 clauses characterise lattices *)
95 (* -------------------------------------------------------------------------- *)
97 (* -------------------------------------------------------------------------- *)
99 (* ----Compatibility (6) *)
101 (* ----Invertability (5) *)
103 (* ----Orthomodular law (8) *)
105 (* ----Denial of weak orthomodular law (10) *)
106 ntheorem prove_weak_orthomodular_law:
107 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
110 ∀complement:∀_:Univ.Univ.
111 ∀join:∀_:Univ.∀_:Univ.Univ.
112 ∀meet:∀_:Univ.∀_:Univ.Univ.
115 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (join X (meet (complement X) (join X Y))) (join X Y).
116 ∀H1:∀X:Univ.eq Univ (complement (complement X)) X.
117 ∀H2:∀X:Univ.eq Univ (meet (complement X) X) n0.
118 ∀H3:∀X:Univ.eq Univ (join (complement X) X) n1.
119 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (complement (meet X Y)) (join (complement X) (complement Y)).
120 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (complement (join X Y)) (meet (complement X) (complement Y)).
121 ∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).
122 ∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).
123 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
124 ∀H9:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
125 ∀H10:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
126 ∀H11:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
127 ∀H12:∀X:Univ.eq Univ (join X X) X.
128 ∀H13:∀X:Univ.eq Univ (meet X X) X.eq Univ (join (meet (complement a) (join a b)) (join (complement b) (meet a b))) n1)
155 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
156 ntry (nassumption) ##;
159 (* -------------------------------------------------------------------------- *)