1 include "logic/equality.ma".
3 (* Inclusion of: LAT051-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LAT051-1 : TPTP v3.7.0. Released v2.5.0. *)
9 (* Domain : Lattice Theory *)
11 (* Problem : Lattice is not ortholattice *)
13 (* Version : [McC88] (equality) axioms. *)
17 (* Refs : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
19 (* : [RW01] Rose & Wilkinson (2001), Application of Model Search *)
23 (* Names : mace-e1.in [RW01] *)
25 (* Status : Satisfiable *)
27 (* Rating : 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.5.0 *)
29 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 1 RR) *)
31 (* Number of atoms : 12 ( 12 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 7 ( 4 constant; 0-2 arity) *)
39 (* Number of variables : 19 ( 2 singleton) *)
41 (* Maximal term depth : 3 ( 2 average) *)
43 (* Comments : First part of the problem. The second part, mace-e2.in, requires *)
45 (* MACE specific input. *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Include lattice axioms *)
51 (* Inclusion of: Axioms/LAT001-0.ax *)
53 (* -------------------------------------------------------------------------- *)
55 (* File : LAT001-0 : TPTP v3.7.0. Released v1.0.0. *)
57 (* Domain : Lattice Theory *)
59 (* Axioms : Lattice theory (equality) axioms *)
61 (* Version : [McC88] (equality) axioms. *)
65 (* Refs : [Bum65] Bumcroft (1965), Proceedings of the Glasgow Mathematic *)
67 (* : [McC88] McCune (1988), Challenge Equality Problems in Lattice *)
69 (* : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr *)
71 (* Source : [McC88] *)
77 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
79 (* Number of atoms : 8 ( 8 equality) *)
81 (* Maximal clause size : 1 ( 1 average) *)
83 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
85 (* Number of functors : 2 ( 0 constant; 2-2 arity) *)
87 (* Number of variables : 16 ( 2 singleton) *)
89 (* Maximal term depth : 3 ( 2 average) *)
93 (* -------------------------------------------------------------------------- *)
95 (* ----The following 8 clauses characterise lattices *)
97 (* -------------------------------------------------------------------------- *)
99 (* -------------------------------------------------------------------------- *)
101 (* ----Invertability (5) *)
103 (* ----Denial of compatibility (6) *)
104 ntheorem prove_compatibility_law:
105 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
108 ∀complement:∀_:Univ.Univ.
109 ∀join:∀_:Univ.∀_:Univ.Univ.
110 ∀meet:∀_:Univ.∀_:Univ.Univ.
113 ∀H0:∀X:Univ.eq Univ (complement (complement X)) X.
114 ∀H1:∀X:Univ.eq Univ (meet (complement X) X) n0.
115 ∀H2:∀X:Univ.eq Univ (join (complement X) X) n1.
116 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (join (join X Y) Z) (join X (join Y Z)).
117 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (meet (meet X Y) Z) (meet X (meet Y Z)).
118 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (join X Y) (join Y X).
119 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (meet X Y) (meet Y X).
120 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (join X (meet X Y)) X.
121 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (meet X (join X Y)) X.
122 ∀H9:∀X:Univ.eq Univ (join X X) X.
123 ∀H10:∀X:Univ.eq Univ (meet X X) X.eq Univ (complement (join a b)) (meet (complement a) (complement b)))
147 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
148 ntry (nassumption) ##;
151 (* -------------------------------------------------------------------------- *)