]> matita.cs.unibo.it Git - helm.git/blob - matitaB/matita/contribs/ng_TPTP/LAT084-1.ma
update in basic_2
[helm.git] / matitaB / matita / contribs / ng_TPTP / LAT084-1.ma
1 include "logic/equality.ma".
2
3 (* Inclusion of: LAT084-1.p *)
4
5 (* -------------------------------------------------------------------------- *)
6
7 (*  File     : LAT084-1 : TPTP v3.7.0. Released v2.6.0. *)
8
9 (*  Domain   : Lattice Theory *)
10
11 (*  Problem  : Axiom for lattice theory, part 5 *)
12
13 (*  Version  : [MP96] (equality) axioms. *)
14
15 (*  English  :  *)
16
17 (*  Refs     : [McC98] McCune (1998), Email to G. Sutcliffe *)
18
19 (*           : [MP96]  McCune & Padmanabhan (1996), Automated Deduction in Eq *)
20
21 (*  Source   : [TPTP] *)
22
23 (*  Names    :  *)
24
25 (*  Status   : Unsatisfiable *)
26
27 (*  Rating   : 0.67 v3.4.0, 0.75 v3.3.0, 0.50 v3.1.0, 0.56 v2.7.0, 0.64 v2.6.0 *)
28
29 (*  Syntax   : Number of clauses     :    2 (   0 non-Horn;   2 unit;   1 RR) *)
30
31 (*             Number of atoms       :    2 (   2 equality) *)
32
33 (*             Maximal clause size   :    1 (   1 average) *)
34
35 (*             Number of predicates  :    1 (   0 propositional; 2-2 arity) *)
36
37 (*             Number of functors    :    4 (   2 constant; 0-2 arity) *)
38
39 (*             Number of variables   :    7 (   1 singleton) *)
40
41 (*             Maximal term depth    :   12 (   4 average) *)
42
43 (*  Comments : A UEQ part of LAT015-1 *)
44
45 (* -------------------------------------------------------------------------- *)
46 ntheorem prove_normal_axioms_5:
47  (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.
48 ∀a:Univ.
49 ∀b:Univ.
50 ∀join:∀_:Univ.∀_:Univ.Univ.
51 ∀meet:∀_:Univ.∀_:Univ.Univ.
52 ∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.∀G:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet D B) (meet B E)) B)) (meet (join (meet B (meet (meet (join D (join B E)) (join F B)) B)) (meet G (join B (meet (meet (join D (join B E)) (join F B)) B)))) (join A (join (join (meet D B) (meet B E)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (join a b) (join b a))
53 .
54 #Univ ##.
55 #A ##.
56 #B ##.
57 #C ##.
58 #D ##.
59 #E ##.
60 #F ##.
61 #G ##.
62 #a ##.
63 #b ##.
64 #join ##.
65 #meet ##.
66 #H0 ##.
67 nauto by H0 ##;
68 ntry (nassumption) ##;
69 nqed.
70
71 (* -------------------------------------------------------------------------- *)