]> matita.cs.unibo.it Git - helm.git/blob - matitaB/matita/contribs/ng_TPTP/LAT092-1.ma
New management of justifications.
[helm.git] / matitaB / matita / contribs / ng_TPTP / LAT092-1.ma
1 include "logic/equality.ma".
2
3 (* Inclusion of: LAT092-1.p *)
4
5 (* -------------------------------------------------------------------------- *)
6
7 (*  File     : LAT092-1 : TPTP v3.7.0. Released v2.6.0. *)
8
9 (*  Domain   : Lattice Theory (Weakly Associative Lattices) *)
10
11 (*  Problem  : Axiom for weakly associative lattices (WAL), part 1 *)
12
13 (*  Version  : [MP96] (equality) axioms : Especial. *)
14
15 (*  English  :  *)
16
17 (*  Refs     : [McC98] McCune (1998), Email to G. Sutcliffe *)
18
19 (*           : [MP96]  McCune & Padmanabhan (1996), Automated Deduction in Eq *)
20
21 (*  Source   : [TPTP] *)
22
23 (*  Names    :  *)
24
25 (*  Status   : Unsatisfiable *)
26
27 (*  Rating   : 0.56 v3.4.0, 0.50 v3.3.0, 0.36 v3.1.0, 0.11 v2.7.0, 0.45 v2.6.0 *)
28
29 (*  Syntax   : Number of clauses     :    2 (   0 non-Horn;   2 unit;   1 RR) *)
30
31 (*             Number of atoms       :    2 (   2 equality) *)
32
33 (*             Maximal clause size   :    1 (   1 average) *)
34
35 (*             Number of predicates  :    1 (   0 propositional; 2-2 arity) *)
36
37 (*             Number of functors    :    3 (   1 constant; 0-2 arity) *)
38
39 (*             Number of variables   :    6 (   1 singleton) *)
40
41 (*             Maximal term depth    :   11 (   4 average) *)
42
43 (*  Comments : A UEQ part of LAT030-1 *)
44
45 (* -------------------------------------------------------------------------- *)
46 ntheorem prove_wal_axioms_1:
47  (∀Univ:Type.∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.
48 ∀a:Univ.
49 ∀join:∀_:Univ.∀_:Univ.Univ.
50 ∀meet:∀_:Univ.∀_:Univ.Univ.
51 ∀H0:∀A:Univ.∀B:Univ.∀C:Univ.∀D:Univ.∀E:Univ.∀F:Univ.eq Univ (join (meet (join (meet A B) (meet B (join A B))) C) (meet (join (meet A (join (join (meet B D) (meet E B)) B)) (meet (join (meet B (meet (meet (join B D) (join E B)) B)) (meet F (join B (meet (meet (join B D) (join E B)) B)))) (join A (join (join (meet B D) (meet E B)) B)))) (join (join (meet A B) (meet B (join A B))) C))) B.eq Univ (meet a a) a)
52 .
53 #Univ ##.
54 #A ##.
55 #B ##.
56 #C ##.
57 #D ##.
58 #E ##.
59 #F ##.
60 #a ##.
61 #join ##.
62 #meet ##.
63 #H0 ##.
64 nauto by H0 ##;
65 ntry (nassumption) ##;
66 nqed.
67
68 (* -------------------------------------------------------------------------- *)