1 include "logic/equality.ma".
3 (* Inclusion of: LCL158-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LCL158-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Logic Calculi (Wajsberg Algebra) *)
11 (* Problem : The 6th alternative Wajsberg algebra axiom *)
13 (* Version : [Bon91] (equality) axioms. *)
17 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
19 (* : [AB90] Anantharaman & Bonacina (1990), An Application of the *)
21 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
23 (* Source : [Bon91] *)
25 (* Names : W' axiom 6 [Bon91] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.38 v2.0.0 *)
31 (* Syntax : Number of clauses : 17 ( 0 non-Horn; 17 unit; 2 RR) *)
33 (* Number of atoms : 17 ( 17 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 9 ( 3 constant; 0-2 arity) *)
41 (* Number of variables : 33 ( 0 singleton) *)
43 (* Maximal term depth : 4 ( 2 average) *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Include Wajsberg algebra axioms *)
51 (* Inclusion of: Axioms/LCL001-0.ax *)
53 (* -------------------------------------------------------------------------- *)
55 (* File : LCL001-0 : TPTP v3.7.0. Released v1.0.0. *)
57 (* Domain : Logic Calculi (Wajsberg Algebras) *)
59 (* Axioms : Wajsberg algebra axioms *)
61 (* Version : [Bon91] (equality) axioms. *)
65 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
67 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
69 (* : [MW92] McCune & Wos (1992), Experiments in Automated Deductio *)
73 (* Names : MV Sentential Calculus [MW92] *)
77 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 0 RR) *)
79 (* Number of atoms : 4 ( 4 equality) *)
81 (* Maximal clause size : 1 ( 1 average) *)
83 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
85 (* Number of functors : 3 ( 1 constant; 0-2 arity) *)
87 (* Number of variables : 8 ( 0 singleton) *)
89 (* Maximal term depth : 4 ( 2 average) *)
93 (* -------------------------------------------------------------------------- *)
95 (* -------------------------------------------------------------------------- *)
97 (* ----Include Wajsberg algebra and and or definitions *)
99 (* Inclusion of: Axioms/LCL001-2.ax *)
101 (* -------------------------------------------------------------------------- *)
103 (* File : LCL001-2 : TPTP v3.7.0. Released v1.0.0. *)
105 (* Domain : Logic Calculi (Wajsberg Algebras) *)
107 (* Axioms : Wajsberg algebra AND and OR definitions *)
109 (* Version : [AB90] (equality) axioms. *)
113 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
115 (* : [AB90] Anantharaman & Bonacina (1990), An Application of the *)
117 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
119 (* Source : [Bon91] *)
125 (* Syntax : Number of clauses : 6 ( 0 non-Horn; 6 unit; 0 RR) *)
127 (* Number of atoms : 6 ( 6 equality) *)
129 (* Maximal clause size : 1 ( 1 average) *)
131 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
133 (* Number of functors : 4 ( 0 constant; 1-2 arity) *)
135 (* Number of variables : 14 ( 0 singleton) *)
137 (* Maximal term depth : 4 ( 3 average) *)
139 (* Comments : Requires LCL001-0.ax *)
141 (* -------------------------------------------------------------------------- *)
143 (* ----Definitions of or and and, which are AC *)
145 (* -------------------------------------------------------------------------- *)
147 (* ----Include Alternative Wajsberg algebra definitions *)
149 (* Inclusion of: Axioms/LCL002-1.ax *)
151 (* -------------------------------------------------------------------------- *)
153 (* File : LCL002-1 : TPTP v3.7.0. Released v1.0.0. *)
155 (* Domain : Logic Calculi (Wajsberg Algebras) *)
157 (* Axioms : Alternative Wajsberg algebra definitions *)
159 (* Version : [AB90] (equality) axioms. *)
163 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
165 (* : [AB90] Anantharaman & Bonacina (1990), An Application of the *)
167 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
169 (* Source : [Bon91] *)
175 (* Syntax : Number of clauses : 6 ( 0 non-Horn; 6 unit; 1 RR) *)
177 (* Number of atoms : 6 ( 6 equality) *)
179 (* Maximal clause size : 1 ( 1 average) *)
181 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
183 (* Number of functors : 7 ( 2 constant; 0-2 arity) *)
185 (* Number of variables : 11 ( 0 singleton) *)
187 (* Maximal term depth : 4 ( 2 average) *)
189 (* Comments : Requires LCL001-0.ax LCL001-2.ax *)
191 (* -------------------------------------------------------------------------- *)
193 (* ----Definitions of and_star and xor, where and_star is AC and xor is C *)
195 (* ---I guess the next two can be derived from the AC of and *)
197 (* ----Definition of false in terms of truth *)
199 (* -------------------------------------------------------------------------- *)
201 (* -------------------------------------------------------------------------- *)
202 ntheorem prove_alternative_wajsberg_axiom:
203 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
204 ∀myand:∀_:Univ.∀_:Univ.Univ.
205 ∀and_star:∀_:Univ.∀_:Univ.Univ.
207 ∀implies:∀_:Univ.∀_:Univ.Univ.
209 ∀or:∀_:Univ.∀_:Univ.Univ.
212 ∀xor:∀_:Univ.∀_:Univ.Univ.
213 ∀H0:eq Univ (not truth) falsehood.
214 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (and_star X Y) (and_star Y X).
215 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (and_star (and_star X Y) Z) (and_star X (and_star Y Z)).
216 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (and_star X Y) (not (or (not X) (not Y))).
217 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (xor X Y) (xor Y X).
218 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (xor X Y) (or (myand X (not Y)) (myand (not X) Y)).
219 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (myand X Y) (myand Y X).
220 ∀H7:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (myand (myand X Y) Z) (myand X (myand Y Z)).
221 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (myand X Y) (not (or (not X) (not Y))).
222 ∀H9:∀X:Univ.∀Y:Univ.eq Univ (or X Y) (or Y X).
223 ∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (or (or X Y) Z) (or X (or Y Z)).
224 ∀H11:∀X:Univ.∀Y:Univ.eq Univ (or X Y) (implies (not X) Y).
225 ∀H12:∀X:Univ.∀Y:Univ.eq Univ (implies (implies (not X) (not Y)) (implies Y X)) truth.
226 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (implies (implies X Y) Y) (implies (implies Y X) X).
227 ∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (implies (implies X Y) (implies (implies Y Z) (implies X Z))) truth.
228 ∀H15:∀X:Univ.eq Univ (implies truth X) X.eq Univ (and_star (xor truth x) x) falsehood)
259 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15 ##;
260 ntry (nassumption) ##;
263 (* -------------------------------------------------------------------------- *)