1 include "logic/equality.ma".
3 (* Inclusion of: LCL164-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LCL164-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Logic Calculi (Wajsberg Algebra) *)
11 (* Problem : The 4th Wajsberg algebra axiom, from the alternative axioms *)
13 (* Version : [Bon91] (equality) axioms. *)
17 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
19 (* : [AB90] Anantharaman & Bonacina (1990), An Application of the *)
21 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
23 (* Source : [Bon91] *)
25 (* Names : W axiom 4 [Bon91] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.38 v2.0.0 *)
31 (* Syntax : Number of clauses : 14 ( 0 non-Horn; 14 unit; 2 RR) *)
33 (* Number of atoms : 14 ( 14 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 8 ( 4 constant; 0-2 arity) *)
41 (* Number of variables : 19 ( 1 singleton) *)
43 (* Maximal term depth : 5 ( 2 average) *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Include Alternative Wajsberg algebra axioms *)
51 (* Inclusion of: Axioms/LCL002-0.ax *)
53 (* -------------------------------------------------------------------------- *)
55 (* File : LCL002-0 : TPTP v3.7.0. Released v1.0.0. *)
57 (* Domain : Logic Calculi (Wajsberg Algebras) *)
59 (* Axioms : Alternative Wajsberg algebra axioms *)
61 (* Version : [AB90] (equality) axioms. *)
65 (* Refs : [FRT84] Font et al. (1984), Wajsberg Algebras *)
67 (* : [AB90] Anantharaman & Bonacina (1990), An Application of the *)
69 (* : [Bon91] Bonacina (1991), Problems in Lukasiewicz Logic *)
71 (* Source : [Bon91] *)
77 (* Syntax : Number of clauses : 8 ( 0 non-Horn; 8 unit; 0 RR) *)
79 (* Number of atoms : 8 ( 8 equality) *)
81 (* Maximal clause size : 1 ( 1 average) *)
83 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
85 (* Number of functors : 5 ( 2 constant; 0-2 arity) *)
87 (* Number of variables : 10 ( 1 singleton) *)
89 (* Maximal term depth : 5 ( 2 average) *)
91 (* Comments : To be used in conjunction with the LAT003 alternative *)
93 (* Wajsberg algebra definitions. *)
95 (* -------------------------------------------------------------------------- *)
97 (* -------------------------------------------------------------------------- *)
99 (* -------------------------------------------------------------------------- *)
101 (* ----Include some Alternative Wajsberg algebra definitions *)
103 (* include('Axioms/LCL002-1.ax'). *)
105 (* ----Definition that and_star is AC and xor is C *)
107 (* ----Definition of false in terms of true *)
109 (* ----Include the definition of implies in terms of xor and and_star *)
110 ntheorem prove_wajsberg_axiom:
111 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
112 ∀and_star:∀_:Univ.∀_:Univ.Univ.
114 ∀implies:∀_:Univ.∀_:Univ.Univ.
118 ∀xor:∀_:Univ.∀_:Univ.Univ.
120 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (implies X Y) (xor truth (and_star X (xor truth Y))).
121 ∀H1:eq Univ (not truth) falsehood.
122 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (and_star X Y) (and_star Y X).
123 ∀H3:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (and_star (and_star X Y) Z) (and_star X (and_star Y Z)).
124 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (xor X Y) (xor Y X).
125 ∀H5:∀X:Univ.∀Y:Univ.eq Univ (and_star (xor (and_star (xor truth X) Y) truth) Y) (and_star (xor (and_star (xor truth Y) X) truth) X).
126 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (xor X (xor truth Y)) (xor (xor X truth) Y).
127 ∀H7:∀X:Univ.eq Univ (and_star (xor truth X) X) falsehood.
128 ∀H8:∀X:Univ.eq Univ (and_star X falsehood) falsehood.
129 ∀H9:∀X:Univ.eq Univ (and_star X truth) X.
130 ∀H10:∀X:Univ.eq Univ (xor X X) falsehood.
131 ∀H11:∀X:Univ.eq Univ (xor X falsehood) X.
132 ∀H12:∀X:Univ.eq Univ (not X) (xor X truth).eq Univ (implies (implies (not x) (not y)) (implies y x)) truth)
159 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12 ##;
160 ntry (nassumption) ##;
163 (* -------------------------------------------------------------------------- *)