1 include "logic/equality.ma".
3 (* Inclusion of: LDA002-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : LDA002-1 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : LD-Algebras *)
11 (* Problem : Verify 3*2(U2)(UU(UU)) = U1(U3)(UU(UU)) *)
13 (* Version : [Jec93] (equality) axioms. *)
17 (* Refs : [Jec93] Jech (1993), LD-Algebras *)
19 (* Source : [Jec93] *)
21 (* Names : Problem 2 [Jec93] *)
23 (* Status : Unsatisfiable *)
25 (* Rating : 0.11 v3.4.0, 0.12 v3.3.0, 0.00 v2.2.1, 0.22 v2.2.0, 0.29 v2.1.0, 0.38 v2.0.0 *)
27 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 11 RR) *)
29 (* Number of atoms : 12 ( 12 equality) *)
31 (* Maximal clause size : 1 ( 1 average) *)
33 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
35 (* Number of functors : 12 ( 11 constant; 0-2 arity) *)
37 (* Number of variables : 3 ( 0 singleton) *)
39 (* Maximal term depth : 3 ( 2 average) *)
43 (* -------------------------------------------------------------------------- *)
45 (* ----A1: x(yz)=xy(xz) *)
47 (* ----3*2*U2*(UU*UU) = U1*U3*(uU*UU) *)
48 ntheorem prove_equation:
49 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
52 ∀f:∀_:Univ.∀_:Univ.Univ.
62 ∀H0:eq Univ v (f uu uu).
63 ∀H1:eq Univ b (f u1 u3).
64 ∀H2:eq Univ a (f (f n3 n2) u2).
65 ∀H3:eq Univ uu (f u u).
66 ∀H4:eq Univ u3 (f u n3).
67 ∀H5:eq Univ u2 (f u n2).
68 ∀H6:eq Univ u1 (f u n1).
69 ∀H7:eq Univ u (f n2 n2).
70 ∀H8:eq Univ n3 (f n2 n1).
71 ∀H9:eq Univ n2 (f n1 n1).
72 ∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (f X (f Y Z)) (f (f X Y) (f X Z)).eq Univ (f a v) (f b v))
101 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
102 ntry (nassumption) ##;
105 (* -------------------------------------------------------------------------- *)