1 include "logic/equality.ma".
3 (* Inclusion of: RNG011-5.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : RNG011-5 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Ring Theory *)
11 (* Problem : In a right alternative ring (((X,X,Y)*X)*(X,X,Y)) = Add Id *)
13 (* Version : [Ove90] (equality) axioms : *)
15 (* Incomplete > Augmented > Incomplete. *)
19 (* Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 *)
21 (* : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal *)
23 (* : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 *)
25 (* : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in *)
27 (* Source : [Ove90] *)
29 (* Names : CADE-11 Competition Eq-10 [Ove90] *)
31 (* : THEOREM EQ-10 [LM93] *)
33 (* : PROBLEM 10 [Zha93] *)
35 (* Status : Unsatisfiable *)
37 (* Rating : 0.00 v2.0.0 *)
39 (* Syntax : Number of clauses : 22 ( 0 non-Horn; 22 unit; 2 RR) *)
41 (* Number of atoms : 22 ( 22 equality) *)
43 (* Maximal clause size : 1 ( 1 average) *)
45 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
47 (* Number of functors : 8 ( 3 constant; 0-3 arity) *)
49 (* Number of variables : 37 ( 2 singleton) *)
51 (* Maximal term depth : 5 ( 2 average) *)
55 (* -------------------------------------------------------------------------- *)
57 (* ----Commutativity of addition *)
59 (* ----Associativity of addition *)
61 (* ----Additive identity *)
63 (* ----Additive inverse *)
65 (* ----Inverse of identity is identity, stupid *)
67 (* ----Axiom of Overbeek *)
69 (* ----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y), *)
71 (* ----Inverse of additive_inverse of X is X *)
73 (* ----Behavior of 0 and the multiplication operation *)
75 (* ----Axiom of Overbeek *)
77 (* ----x * additive_inverse(y) = additive_inverse (x * y), *)
79 (* ----Distributive property of product over sum *)
81 (* ----Right alternative law *)
87 (* ----Middle associator identity *)
88 ntheorem prove_equality:
89 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
91 ∀add:∀_:Univ.∀_:Univ.Univ.
92 ∀additive_identity:Univ.
93 ∀additive_inverse:∀_:Univ.Univ.
94 ∀associator:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
96 ∀commutator:∀_:Univ.∀_:Univ.Univ.
97 ∀multiply:∀_:Univ.∀_:Univ.Univ.
98 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (multiply (multiply (associator X X Y) X) (associator X X Y)) additive_identity.
99 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (commutator X Y) (add (multiply Y X) (additive_inverse (multiply X Y))).
100 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (associator X Y Z) (add (multiply (multiply X Y) Z) (additive_inverse (multiply X (multiply Y Z)))).
101 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (multiply (multiply X Y) Y) (multiply X (multiply Y Y)).
102 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
103 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
104 ∀H6:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) Y) (additive_inverse (multiply X Y)).
105 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (multiply X (additive_inverse Y)) (additive_inverse (multiply X Y)).
106 ∀H8:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).
107 ∀H9:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
108 ∀H10:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
109 ∀H11:∀X:Univ.eq Univ (additive_inverse (additive_inverse X)) X.
110 ∀H12:∀X:Univ.∀Y:Univ.eq Univ (additive_inverse (add X Y)) (add (additive_inverse X) (additive_inverse Y)).
111 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X (add (additive_inverse X) Y)) Y.
112 ∀H14:eq Univ (additive_inverse additive_identity) additive_identity.
113 ∀H15:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
114 ∀H16:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
115 ∀H17:∀X:Univ.eq Univ (add additive_identity X) X.
116 ∀H18:∀X:Univ.eq Univ (add X additive_identity) X.
117 ∀H19:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
118 ∀H20:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply (multiply (associator a a b) a) (associator a a b)) additive_identity)
126 #additive_identity ##.
127 #additive_inverse ##.
153 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20 ##;
154 ntry (nassumption) ##;
157 (* -------------------------------------------------------------------------- *)