]> matita.cs.unibo.it Git - helm.git/blob - matitaB/matita/contribs/ng_TPTP/RNG031-6.ma
New management of justifications.
[helm.git] / matitaB / matita / contribs / ng_TPTP / RNG031-6.ma
1 include "logic/equality.ma".
2
3 (* Inclusion of: RNG031-6.p *)
4
5 (* -------------------------------------------------------------------------- *)
6
7 (*  File     : RNG031-6 : TPTP v3.7.0. Released v1.0.0. *)
8
9 (*  Domain   : Ring Theory (Right alternative) *)
10
11 (*  Problem  : (W*W)*X*(W*W) = additive identity *)
12
13 (*  Version  : [Ste87] (equality) axioms : Reduced > Complete. *)
14
15 (*  English  :  *)
16
17 (*  Refs     : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin *)
18
19 (*           : [Ste92] Stevens (1992), Unpublished Note *)
20
21 (*  Source   : [Ste87] *)
22
23 (*  Names    : Conjecture 2 [Ste87] *)
24
25 (*  Status   : Satisfiable *)
26
27 (*  Rating   : 0.67 v3.3.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.6.0, 0.67 v2.5.0, 1.00 v2.0.0 *)
28
29 (*  Syntax   : Number of clauses     :   15 (   0 non-Horn;  15 unit;   1 RR) *)
30
31 (*             Number of atoms       :   15 (  15 equality) *)
32
33 (*             Maximal clause size   :    1 (   1 average) *)
34
35 (*             Number of predicates  :    1 (   0 propositional; 2-2 arity) *)
36
37 (*             Number of functors    :    8 (   3 constant; 0-3 arity) *)
38
39 (*             Number of variables   :   25 (   2 singleton) *)
40
41 (*             Maximal term depth    :    5 (   2 average) *)
42
43 (*  Comments : This conjecture has been shown true. See [Ste92]. *)
44
45 (* -------------------------------------------------------------------------- *)
46
47 (* ----Don't Include nonassociative ring axioms. *)
48
49 (* ----The left alternative law has to be omitted. *)
50
51 (*  include('axioms/RNG003-0.ax'). *)
52
53 (* -------------------------------------------------------------------------- *)
54
55 (* ----Commutativity for addition  *)
56
57 (* ----Associativity for addition  *)
58
59 (* ----There exists an additive identity element  *)
60
61 (* ----Multiplicative zero  *)
62
63 (* ----Existence of left additive additive_inverse  *)
64
65 (* ----Distributive property of product over sum  *)
66
67 (* ----Inverse of additive_inverse of X is X  *)
68
69 (* ----Right alternative law  *)
70
71 (* ----Left alternative law  *)
72
73 (*  input_clause(left_alternative,axiom, *)
74
75 (*      [++equal(multiply(multiply(X,X),Y),multiply(X,multiply(X,Y)))]). *)
76
77 (* ----Associator  *)
78
79 (* ----Commutator  *)
80 ntheorem prove_conjecture_2:
81  (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
82 ∀add:∀_:Univ.∀_:Univ.Univ.
83 ∀additive_identity:Univ.
84 ∀additive_inverse:∀_:Univ.Univ.
85 ∀associator:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
86 ∀commutator:∀_:Univ.∀_:Univ.Univ.
87 ∀multiply:∀_:Univ.∀_:Univ.Univ.
88 ∀x:Univ.
89 ∀y:Univ.
90 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (commutator X Y) (add (multiply Y X) (additive_inverse (multiply X Y))).
91 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (associator X Y Z) (add (multiply (multiply X Y) Z) (additive_inverse (multiply X (multiply Y Z)))).
92 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply (multiply X Y) Y) (multiply X (multiply Y Y)).
93 ∀H3:∀X:Univ.eq Univ (additive_inverse (additive_inverse X)) X.
94 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
95 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
96 ∀H6:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
97 ∀H7:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
98 ∀H8:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
99 ∀H9:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
100 ∀H10:∀X:Univ.eq Univ (add X additive_identity) X.
101 ∀H11:∀X:Univ.eq Univ (add additive_identity X) X.
102 ∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (add Y Z)) (add (add X Y) Z).
103 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y))) additive_identity)
104 .
105 #Univ ##.
106 #X ##.
107 #Y ##.
108 #Z ##.
109 #add ##.
110 #additive_identity ##.
111 #additive_inverse ##.
112 #associator ##.
113 #commutator ##.
114 #multiply ##.
115 #x ##.
116 #y ##.
117 #H0 ##.
118 #H1 ##.
119 #H2 ##.
120 #H3 ##.
121 #H4 ##.
122 #H5 ##.
123 #H6 ##.
124 #H7 ##.
125 #H8 ##.
126 #H9 ##.
127 #H10 ##.
128 #H11 ##.
129 #H12 ##.
130 #H13 ##.
131 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
132 ntry (nassumption) ##;
133 nqed.
134
135 (* -------------------------------------------------------------------------- *)