1 include "logic/equality.ma".
3 (* Inclusion of: RNG031-7.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : RNG031-7 : TPTP v3.7.0. Released v1.0.0. *)
9 (* Domain : Ring Theory (Right alternative) *)
11 (* Problem : (W*W)*X*(W*W) = additive identity *)
13 (* Version : [Ste87] (equality) axioms : Augmented. *)
17 (* Refs : [Ste87] Stevens (1987), Some Experiments in Nonassociative Rin *)
19 (* : [Ste92] Stevens (1992), Unpublished Note *)
21 (* Source : [Ste87] *)
23 (* Names : Conjecture 2 [Ste87] *)
25 (* Status : Satisfiable *)
27 (* Rating : 0.67 v3.3.0, 0.33 v3.2.0, 0.67 v3.1.0, 0.33 v2.6.0, 0.67 v2.5.0, 1.00 v2.0.0 *)
29 (* Syntax : Number of clauses : 22 ( 0 non-Horn; 22 unit; 1 RR) *)
31 (* Number of atoms : 22 ( 22 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 8 ( 3 constant; 0-3 arity) *)
39 (* Number of variables : 43 ( 2 singleton) *)
41 (* Maximal term depth : 5 ( 3 average) *)
43 (* Comments : This conjecture has been shown true. See [Ste92]. *)
45 (* : Extra lemmas added to help the ITP prover. *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Don't Include nonassociative ring axioms. *)
51 (* ----The left alternative law has to be omitted. *)
53 (* include('axioms/RNG003-0.ax'). *)
55 (* -------------------------------------------------------------------------- *)
57 (* ----The next 7 clause are extra lemmas which Stevens found useful *)
59 (* ----Commutativity for addition *)
61 (* ----Associativity for addition *)
63 (* ----There exists an additive identity element *)
65 (* ----Multiplicative zero *)
67 (* ----Existence of left additive additive_inverse *)
69 (* ----Distributive property of product over sum *)
71 (* ----Inverse of additive_inverse of X is X *)
73 (* ----Right alternative law *)
75 (* ----Left alternative law *)
77 (* input_clause(left_alternative,axiom, *)
79 (* [++equal(multiply(multiply(X,X),Y),multiply(X,multiply(X,Y)))]). *)
84 ntheorem prove_conjecture_2:
85 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
86 ∀add:∀_:Univ.∀_:Univ.Univ.
87 ∀additive_identity:Univ.
88 ∀additive_inverse:∀_:Univ.Univ.
89 ∀associator:∀_:Univ.∀_:Univ.∀_:Univ.Univ.
90 ∀commutator:∀_:Univ.∀_:Univ.Univ.
91 ∀multiply:∀_:Univ.∀_:Univ.Univ.
94 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (commutator X Y) (add (multiply Y X) (additive_inverse (multiply X Y))).
95 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (associator X Y Z) (add (multiply (multiply X Y) Z) (additive_inverse (multiply X (multiply Y Z)))).
96 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (multiply (multiply X Y) Y) (multiply X (multiply Y Y)).
97 ∀H3:∀X:Univ.eq Univ (additive_inverse (additive_inverse X)) X.
98 ∀H4:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
99 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
100 ∀H6:∀X:Univ.eq Univ (add X (additive_inverse X)) additive_identity.
101 ∀H7:∀X:Univ.eq Univ (add (additive_inverse X) X) additive_identity.
102 ∀H8:∀X:Univ.eq Univ (multiply X additive_identity) additive_identity.
103 ∀H9:∀X:Univ.eq Univ (multiply additive_identity X) additive_identity.
104 ∀H10:∀X:Univ.eq Univ (add X additive_identity) X.
105 ∀H11:∀X:Univ.eq Univ (add additive_identity X) X.
106 ∀H12:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (add Y Z)) (add (add X Y) Z).
107 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).
108 ∀H14:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) (additive_inverse Z)) (add (additive_inverse (multiply X Z)) (additive_inverse (multiply Y Z))).
109 ∀H15:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (additive_inverse X) (add Y Z)) (add (additive_inverse (multiply X Y)) (additive_inverse (multiply X Z))).
110 ∀H16:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X (additive_inverse Y)) Z) (add (multiply X Z) (additive_inverse (multiply Y Z))).
111 ∀H17:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (additive_inverse Z))) (add (multiply X Y) (additive_inverse (multiply X Z))).
112 ∀H18:∀X:Univ.∀Y:Univ.eq Univ (multiply X (additive_inverse Y)) (additive_inverse (multiply X Y)).
113 ∀H19:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) Y) (additive_inverse (multiply X Y)).
114 ∀H20:∀X:Univ.∀Y:Univ.eq Univ (multiply (additive_inverse X) (additive_inverse Y)) (multiply X Y).eq Univ (multiply (multiply (multiply (associator x x y) (associator x x y)) x) (multiply (associator x x y) (associator x x y))) additive_identity)
121 #additive_identity ##.
122 #additive_inverse ##.
149 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,H14,H15,H16,H17,H18,H19,H20 ##;
150 ntry (nassumption) ##;
153 (* -------------------------------------------------------------------------- *)