1 include "logic/equality.ma".
3 (* Inclusion of: RNG042-2.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : RNG042-2 : TPTP v3.7.0. Released v2.5.0. *)
9 (* Domain : Ring Theory *)
11 (* Problem : Ring theory (equality) axioms *)
13 (* Version : [PS81] (equality) axioms : *)
15 (* Reduced & Augmented > Complete. *)
19 (* Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions *)
25 (* Status : Satisfiable *)
27 (* Rating : 0.00 v3.2.0, 0.33 v3.1.0, 0.00 v2.5.0 *)
29 (* Syntax : Number of clauses : 14 ( 0 non-Horn; 14 unit; 1 RR) *)
31 (* Number of atoms : 14 ( 14 equality) *)
33 (* Maximal clause size : 1 ( 1 average) *)
35 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
37 (* Number of functors : 4 ( 1 constant; 0-2 arity) *)
39 (* Number of variables : 25 ( 2 singleton) *)
41 (* Maximal term depth : 3 ( 2 average) *)
45 (* -------------------------------------------------------------------------- *)
47 (* ----Include Ring theory (equality) axioms *)
49 (* Inclusion of: Axioms/RNG002-0.ax *)
51 (* -------------------------------------------------------------------------- *)
53 (* File : RNG002-0 : TPTP v3.7.0. Released v1.0.0. *)
55 (* Domain : Ring Theory *)
57 (* Axioms : Ring theory (equality) axioms *)
59 (* Version : [PS81] (equality) axioms : *)
61 (* Reduced & Augmented > Complete. *)
65 (* Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions *)
73 (* Syntax : Number of clauses : 14 ( 0 non-Horn; 14 unit; 1 RR) *)
75 (* Number of atoms : 14 ( 14 equality) *)
77 (* Maximal clause size : 1 ( 1 average) *)
79 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
81 (* Number of functors : 4 ( 1 constant; 0-2 arity) *)
83 (* Number of variables : 25 ( 2 singleton) *)
85 (* Maximal term depth : 3 ( 2 average) *)
87 (* Comments : Not sure if these are complete. I don't know if the reductions *)
89 (* given in [PS81] are suitable for ATP. *)
91 (* -------------------------------------------------------------------------- *)
93 (* ----Existence of left identity for addition *)
95 (* ----Existence of left additive additive_inverse *)
97 (* ----Distributive property of product over sum *)
99 (* ----Inverse of identity is identity, stupid *)
101 (* ----Inverse of additive_inverse of X is X *)
103 (* ----Behavior of 0 and the multiplication operation *)
105 (* ----Inverse of (x + y) is additive_inverse(x) + additive_inverse(y) *)
107 (* ----x * additive_inverse(y) = additive_inverse (x * y) *)
109 (* ----Associativity of addition *)
111 (* ----Commutativity of addition *)
113 (* ----Associativity of product *)
115 (* -------------------------------------------------------------------------- *)
117 (* -------------------------------------------------------------------------- *)