1 include "logic/equality.ma".
3 (* Inclusion of: ROB007-2.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : ROB007-2 : TPTP v3.7.0. Bugfixed v3.1.0. *)
9 (* Domain : Robbins Algebra *)
11 (* Problem : Absorbed within negation element => Exists idempotent element *)
13 (* Version : [Win90] (equality) axioms. *)
15 (* English : If there exist a, b such that -(a+b) = -b, then the algebra *)
19 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
21 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
23 (* Source : [Win90] *)
25 (* Names : Theorem 1.2 [Win90] *)
27 (* Status : Unknown *)
29 (* Rating : 1.00 v3.1.0 *)
31 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 2 RR) *)
33 (* Number of atoms : 5 ( 5 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
41 (* Number of variables : 8 ( 0 singleton) *)
43 (* Maximal term depth : 6 ( 2 average) *)
45 (* Comments : Commutativity, associativity, and Huntington's axiom *)
47 (* axiomatize Boolean algebra. *)
49 (* Bugfixes : v3.1.0 - Removed extra negated_conjecture clauses. *)
51 (* -------------------------------------------------------------------------- *)
53 (* ----Include axioms for Robbins algebra *)
55 (* Inclusion of: Axioms/ROB001-0.ax *)
57 (* -------------------------------------------------------------------------- *)
59 (* File : ROB001-0 : TPTP v3.7.0. Released v1.0.0. *)
61 (* Domain : Robbins algebra *)
63 (* Axioms : Robbins algebra axioms *)
65 (* Version : [Win90] (equality) axioms. *)
69 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
71 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
73 (* Source : [OTTER] *)
75 (* Names : Lemma 2.2 [Win90] *)
79 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
81 (* Number of atoms : 3 ( 3 equality) *)
83 (* Maximal clause size : 1 ( 1 average) *)
85 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
87 (* Number of functors : 2 ( 0 constant; 1-2 arity) *)
89 (* Number of variables : 7 ( 0 singleton) *)
91 (* Maximal term depth : 6 ( 3 average) *)
95 (* -------------------------------------------------------------------------- *)
97 (* -------------------------------------------------------------------------- *)
99 (* -------------------------------------------------------------------------- *)
100 ntheorem prove_idempotence:
101 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
103 ∀add:∀_:Univ.∀_:Univ.Univ.
105 ∀negate:∀_:Univ.Univ.
106 ∀H0:eq Univ (negate (add a b)) (negate b).
107 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
108 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
109 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X)
123 napply (ex_intro ? ? ? ?) ##[
125 nauto by H0,H1,H2,H3 ##;
127 ntry (nassumption) ##;
130 (* -------------------------------------------------------------------------- *)