1 include "logic/equality.ma".
3 (* Inclusion of: ROB020-2.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : ROB020-2 : TPTP v3.7.0. Bugfixed v3.1.0. *)
9 (* Domain : Robbins Algebra *)
11 (* Problem : -(a + -b)=b => Exists idempotent element *)
13 (* Version : [Win90] (equality) axioms. *)
15 (* Theorem formulation : Denies Huntington's axiom, double *)
17 (* negation, and idempotence. *)
19 (* English : If there exist a, b such that -(a + -b) = b, the algebra *)
23 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
25 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
27 (* Source : [Win90] *)
29 (* Names : Corollary 3.10 [Win90] *)
31 (* Status : Unknown *)
33 (* Rating : 1.00 v3.1.0 *)
35 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 2 RR) *)
37 (* Number of atoms : 5 ( 5 equality) *)
39 (* Maximal clause size : 1 ( 1 average) *)
41 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
43 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
45 (* Number of variables : 8 ( 0 singleton) *)
47 (* Maximal term depth : 6 ( 2 average) *)
49 (* Comments : Commutativity, associativity, and Huntington's axiom *)
51 (* axiomatize Boolean algebra. *)
53 (* Bugfixes : v3.1.0 - Removed extra negated_conjecture clauses. *)
55 (* -------------------------------------------------------------------------- *)
57 (* ----Include axioms for Robbins algebra *)
59 (* Inclusion of: Axioms/ROB001-0.ax *)
61 (* -------------------------------------------------------------------------- *)
63 (* File : ROB001-0 : TPTP v3.7.0. Released v1.0.0. *)
65 (* Domain : Robbins algebra *)
67 (* Axioms : Robbins algebra axioms *)
69 (* Version : [Win90] (equality) axioms. *)
73 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
75 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
77 (* Source : [OTTER] *)
79 (* Names : Lemma 2.2 [Win90] *)
83 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
85 (* Number of atoms : 3 ( 3 equality) *)
87 (* Maximal clause size : 1 ( 1 average) *)
89 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
91 (* Number of functors : 2 ( 0 constant; 1-2 arity) *)
93 (* Number of variables : 7 ( 0 singleton) *)
95 (* Maximal term depth : 6 ( 3 average) *)
99 (* -------------------------------------------------------------------------- *)
101 (* -------------------------------------------------------------------------- *)
103 (* -------------------------------------------------------------------------- *)
104 ntheorem prove_idempotence:
105 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
107 ∀add:∀_:Univ.∀_:Univ.Univ.
109 ∀negate:∀_:Univ.Univ.
110 ∀H0:eq Univ (negate (add a (negate b))) b.
111 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
112 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
113 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃X:Univ.eq Univ (add X X) X)
127 napply (ex_intro ? ? ? ?) ##[
129 nauto by H0,H1,H2,H3 ##;
131 ntry (nassumption) ##;
134 (* -------------------------------------------------------------------------- *)