1 include "logic/equality.ma".
3 (* Inclusion of: ROB030-1.p *)
5 (* ------------------------------------------------------------------------------ *)
7 (* File : ROB030-1 : TPTP v3.7.0. Released v3.1.0. *)
9 (* Domain : Robbins Algebra *)
11 (* Problem : Exists absorbed element => Exists absorbed within negation element *)
13 (* Version : [Win90] (equality) axioms. *)
15 (* Theorem formulation : Denies Huntington's axiom. *)
17 (* English : If there are elements c and d such that c+d=d, then the *)
19 (* algebra is Boolean. *)
21 (* Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
23 (* : [Loe04] Loechner (2004), Email to Geoff Sutcliffe *)
25 (* Source : [Loe04] *)
27 (* Names : (1) [Loe04] *)
29 (* Status : Unsatisfiable *)
31 (* Rating : 0.00 v3.1.0 *)
33 (* Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 2 RR) *)
35 (* Number of atoms : 5 ( 5 equality) *)
37 (* Maximal clause size : 1 ( 1 average) *)
39 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
41 (* Number of functors : 4 ( 2 constant; 0-2 arity) *)
43 (* Number of variables : 9 ( 1 singleton) *)
45 (* Maximal term depth : 6 ( 2 average) *)
49 (* ------------------------------------------------------------------------------ *)
51 (* ----Include axioms for Robbins algebra *)
53 (* Inclusion of: Axioms/ROB001-0.ax *)
55 (* -------------------------------------------------------------------------- *)
57 (* File : ROB001-0 : TPTP v3.7.0. Released v1.0.0. *)
59 (* Domain : Robbins algebra *)
61 (* Axioms : Robbins algebra axioms *)
63 (* Version : [Win90] (equality) axioms. *)
67 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
69 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
71 (* Source : [OTTER] *)
73 (* Names : Lemma 2.2 [Win90] *)
77 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
79 (* Number of atoms : 3 ( 3 equality) *)
81 (* Maximal clause size : 1 ( 1 average) *)
83 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
85 (* Number of functors : 2 ( 0 constant; 1-2 arity) *)
87 (* Number of variables : 7 ( 0 singleton) *)
89 (* Maximal term depth : 6 ( 3 average) *)
93 (* -------------------------------------------------------------------------- *)
95 (* -------------------------------------------------------------------------- *)
97 (* ------------------------------------------------------------------------------ *)
98 ntheorem prove_absorption_within_negation:
99 (∀Univ:Type.∀A:Univ.∀B:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
100 ∀add:∀_:Univ.∀_:Univ.Univ.
103 ∀negate:∀_:Univ.Univ.
104 ∀H0:eq Univ (add c d) d.
105 ∀H1:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
106 ∀H2:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
107 ∀H3:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃A:Univ.∃B:Univ.eq Univ (negate (add A B)) (negate B))
123 napply (ex_intro ? ? ? ?) ##[
125 napply (ex_intro ? ? ? ?) ##[
127 nauto by H0,H1,H2,H3 ##;
130 ntry (nassumption) ##;
133 (* ------------------------------------------------------------------------------ *)