1 include "logic/equality.ma".
3 (* Inclusion of: ROB032-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : ROB032-1 : TPTP v3.7.0. Released v3.1.0. *)
9 (* Domain : Robbins Algebra *)
11 (* Problem : Robbins => Exists absorbed element *)
13 (* Version : [Win90] (equality) axioms. *)
15 (* Theorem formulation : Denies Huntington's axiom. *)
17 (* English : If there are elements c and d such that c+d=d, then the *)
19 (* algebra is Boolean. *)
21 (* Refs : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
23 (* : [Wos92] Wos (1992), An Opportunity to Test Your Skills, and th *)
25 (* : [Loe04] Loechner (2004), Email to Geoff Sutcliffe *)
27 (* Source : [Loe04] *)
31 (* Status : Unsatisfiable *)
33 (* Rating : 1.00 v3.1.0 *)
35 (* Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 1 RR) *)
37 (* Number of atoms : 4 ( 4 equality) *)
39 (* Maximal clause size : 1 ( 1 average) *)
41 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
43 (* Number of functors : 2 ( 0 constant; 1-2 arity) *)
45 (* Number of variables : 9 ( 1 singleton) *)
47 (* Maximal term depth : 6 ( 2 average) *)
51 (* -------------------------------------------------------------------------- *)
53 (* ----Include axioms for Robbins algebra *)
55 (* Inclusion of: Axioms/ROB001-0.ax *)
57 (* -------------------------------------------------------------------------- *)
59 (* File : ROB001-0 : TPTP v3.7.0. Released v1.0.0. *)
61 (* Domain : Robbins algebra *)
63 (* Axioms : Robbins algebra axioms *)
65 (* Version : [Win90] (equality) axioms. *)
69 (* Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras *)
71 (* : [Win90] Winker (1990), Robbins Algebra: Conditions that make a *)
73 (* Source : [OTTER] *)
75 (* Names : Lemma 2.2 [Win90] *)
79 (* Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 0 RR) *)
81 (* Number of atoms : 3 ( 3 equality) *)
83 (* Maximal clause size : 1 ( 1 average) *)
85 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
87 (* Number of functors : 2 ( 0 constant; 1-2 arity) *)
89 (* Number of variables : 7 ( 0 singleton) *)
91 (* Maximal term depth : 6 ( 3 average) *)
95 (* -------------------------------------------------------------------------- *)
97 (* -------------------------------------------------------------------------- *)
99 (* -------------------------------------------------------------------------- *)
100 ntheorem prove_absorbtion:
101 (∀Univ:Type.∀C:Univ.∀D:Univ.∀X:Univ.∀Y:Univ.∀Z:Univ.
102 ∀add:∀_:Univ.∀_:Univ.Univ.
103 ∀negate:∀_:Univ.Univ.
104 ∀H0:∀X:Univ.∀Y:Univ.eq Univ (negate (add (negate (add X Y)) (negate (add X (negate Y))))) X.
105 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
106 ∀H2:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).∃C:Univ.∃D:Univ.eq Univ (add C D) D)
119 napply (ex_intro ? ? ? ?) ##[
121 napply (ex_intro ? ? ? ?) ##[
123 nauto by H0,H1,H2 ##;
126 ntry (nassumption) ##;
129 (* -------------------------------------------------------------------------- *)