1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* ********************************************************************** *)
16 (* Progetto FreeScale *)
18 (* Sviluppato da: Ing. Cosimo Oliboni, oliboni@cs.unibo.it *)
19 (* Sviluppo: 2008-2010 *)
21 (* ********************************************************************** *)
23 include "common/nelist.ma".
24 include "common/prod.ma".
26 nlet rec nmember_natList (elem:nat) (l:ne_list nat) on l ≝
28 [ ne_nil h ⇒ ⊖(eqc ? elem h)
29 | ne_cons h t ⇒ match eqc ? elem h with
30 [ true ⇒ false | false ⇒ nmember_natList elem t ]
33 (* elem presente una ed una sola volta in l *)
34 nlet rec member_natList (elem:nat) (l:ne_list nat) on l ≝
36 [ ne_nil h ⇒ eqc ? elem h
37 | ne_cons h t ⇒ match eqc ? elem h with
38 [ true ⇒ nmember_natList elem t | false ⇒ member_natList elem t ]
41 (* costruttore di un sottouniverso:
42 S_EL cioe' uno qualsiasi degli elementi del sottouniverso
44 ninductive S_UN (l:ne_list nat) : Type ≝
45 S_EL : Πx:nat.((member_natList x l) = true) → S_UN l.
47 ndefinition getelem : ∀l.∀e:S_UN l.nat.
53 ndefinition eq_SUN ≝ λl.λx,y:S_UN l.eq_nat (getelem ? x) (getelem ? y).
55 ndefinition getdim : ∀l.∀e:S_UN l.member_natList (getelem ? e) l = true.
62 : ∀l.∀e1,e2.∀dim1,dim2.S_EL l e1 dim1 = S_EL l e2 dim2 → e1 = e2.
63 #l; #e1; #e2; #dim1; #dim2; #H;
64 nchange with (match S_EL l e2 dim2 with [ S_EL a _ ⇒ e1 = a ]);
70 (* destruct universale *)
71 ndefinition SUN_destruct : ∀l.∀x,y:S_UN l.∀P:Prop.x = y → match eq_SUN l x y with [ true ⇒ P → P | false ⇒ P ].
77 nchange with (? → (match eq_nat u1 u2 with [ true ⇒ P → P | false ⇒ P ]));
79 nrewrite > (SUN_destruct_1 l … H);
80 nrewrite > (eq_to_eqc ? u2 u2 (refl_eq …));
85 (* eq_to_eqxx universale *)
86 nlemma eq_to_eqSUN : ∀l.∀x,y:S_UN l.x = y → eq_SUN l x y = true.
91 nchange with (? → (eqc ? u1 u2) = true);
92 #H; napply (eq_to_eqc ? u1 u2);
93 napply (SUN_destruct_1 l … H).
96 (* neqxx_to_neq universale *)
97 nlemma neqSUN_to_neq : ∀l.∀x,y:S_UN l.eq_SUN l x y = false → x ≠ y.
99 napply (not_to_not (n1 = n2) (eq_SUN l n1 n2 = true) …);
100 ##[ ##1: napply (eq_to_eqSUN l n1 n2)
101 ##| ##2: napply (eqfalse_to_neqtrue … H)
105 (* eqxx_to_eq universale *)
106 (* !!! evidente ma come si fa? *)
107 naxiom eqSUN_to_eq_aux : ∀l,x,y.((getelem l x) = (getelem l y)) → x = y.
109 nlemma eqSUN_to_eq : ∀l.∀x,y:S_UN l.eq_SUN l x y = true → x = y.
111 nchange with (((eqc ? (getelem ? x) (getelem ? y)) = true) → x = y);
112 #H; napply (eqSUN_to_eq_aux l x y (eqc_to_eq … H)).
115 (* neq_to_neqxx universale *)
116 nlemma neq_to_neqSUN : ∀l.∀x,y:S_UN l.x ≠ y → eq_SUN l x y = false.
118 napply (neqtrue_to_eqfalse (eq_SUN l n1 n2));
119 napply (not_to_not (eq_SUN l n1 n2 = true) (n1 = n2) ? H);
120 napply (eqSUN_to_eq l n1 n2).
123 (* decidibilita' universale *)
124 nlemma decidable_SUN : ∀l.∀x,y:S_UN l.decidable (x = y).
125 #l; #x; #y; nnormalize;
126 napply (or2_elim (eq_SUN l x y = true) (eq_SUN l x y = false) ? (decidable_bexpr ?));
127 ##[ ##1: #H; napply (or2_intro1 (x = y) (x ≠ y) (eqSUN_to_eq l … H))
128 ##| ##2: #H; napply (or2_intro2 (x = y) (x ≠ y) (neqSUN_to_neq l … H))
132 (* simmetria di uguaglianza universale *)
133 nlemma symmetric_eqSUN : ∀l.symmetricT (S_UN l) bool (eq_SUN l).
135 napply (or2_elim (n1 = n2) (n1 ≠ n2) ? (decidable_SUN l n1 n2));
136 ##[ ##1: #H; nrewrite > H; napply refl_eq
137 ##| ##2: #H; nrewrite > (neq_to_neqSUN l n1 n2 H);
138 napply (symmetric_eq ? (eq_SUN l n2 n1) false);
139 napply (neq_to_neqSUN l n2 n1 (symmetric_neq ? n1 n2 H))
143 (* scheletro di funzione generica ad 1 argomento *)
144 nlet rec farg1_auxT (T:Type) (l:ne_list nat) on l ≝
147 | ne_cons _ t ⇒ ProdT T (farg1_auxT T t)
150 nlemma farg1_auxDim : ∀h,t,x.(eqc ? x h) = false → member_natList x (h§§t) = true → member_natList x t = true.
152 nnormalize in H1:(%);
153 nrewrite > H in H1:(%);
158 nlet rec farg1 (T:Type) (l:ne_list nat) on l ≝
160 [ ne_nil h ⇒ λarg:farg1_auxT T «£h».λx:S_UN «£h».arg
161 | ne_cons h t ⇒ λarg:farg1_auxT T (h§§t).λx:S_UN (h§§t).
162 match eqc ? (getelem ? x) h
163 return λy.(eqc ? (getelem ? x) h) = y → ?
165 [ true ⇒ λp:((eqc ? (getelem ? x) h) = true).fst … arg
166 | false ⇒ λp:((eqc ? (getelem ? x) h) = false).
169 (S_EL t (getelem ? x) (farg1_auxDim h t (getelem ? x) p (getdim ? x)))
170 ] (refl_eq ? (eqc ? (getelem ? x) h))
173 (* scheletro di funzione generica a 2 argomenti *)
174 nlet rec farg2 (T:Type) (l,lfix:ne_list nat) on l ≝
176 [ ne_nil h ⇒ λarg:farg1_auxT (farg1_auxT T lfix) «£h».λx:S_UN «£h».farg1 T lfix arg
177 | ne_cons h t ⇒ λarg:farg1_auxT (farg1_auxT T lfix) (h§§t).λx:S_UN (h§§t).
178 match eqc ? (getelem ? x) h
179 return λy.(eqc ? (getelem ? x) h) = y → ?
181 [ true ⇒ λp:((eqc ? (getelem ? x) h) = true).farg1 T lfix (fst … arg)
182 | false ⇒ λp:((eqc ? (getelem ? x) h) = false).
185 (S_EL t (getelem ? x) (farg1_auxDim h t (getelem ? x) p (getdim ? x)))
186 ] (refl_eq ? (eqc ? (getelem ? x) h))
189 (* esempio0: universo ottale *)
190 ndefinition oct0 ≝ O.
191 ndefinition oct1 ≝ nat1.
192 ndefinition oct2 ≝ nat2.
193 ndefinition oct3 ≝ nat3.
194 ndefinition oct4 ≝ nat4.
195 ndefinition oct5 ≝ nat5.
196 ndefinition oct6 ≝ nat6.
197 ndefinition oct7 ≝ nat7.
199 ndefinition oct_UN ≝ « oct0 ; oct1 ; oct2 ; oct3 ; oct4 ; oct5 ; oct6 £ oct7 ».
201 ndefinition uoct0 ≝ S_EL oct_UN oct0 (refl_eq …).
202 ndefinition uoct1 ≝ S_EL oct_UN oct1 (refl_eq …).
203 ndefinition uoct2 ≝ S_EL oct_UN oct2 (refl_eq …).
204 ndefinition uoct3 ≝ S_EL oct_UN oct3 (refl_eq …).
205 ndefinition uoct4 ≝ S_EL oct_UN oct4 (refl_eq …).
206 ndefinition uoct5 ≝ S_EL oct_UN oct5 (refl_eq …).
207 ndefinition uoct6 ≝ S_EL oct_UN oct6 (refl_eq …).
208 ndefinition uoct7 ≝ S_EL oct_UN oct7 (refl_eq …).
210 (* esempio1: NOT ottale *)
212 farg1 (S_UN oct_UN) oct_UN
213 (pair … uoct7 (pair … uoct6 (pair … uoct5 (pair … uoct4 (pair … uoct3 (pair … uoct2 (pair … uoct1 uoct0))))))).
215 (* esempio2: AND ottale *)
216 ndefinition octAND0 ≝ pair … uoct0 (pair … uoct0 (pair … uoct0 (pair … uoct0 (pair … uoct0 (pair … uoct0 (pair … uoct0 uoct0)))))).
217 ndefinition octAND1 ≝ pair … uoct0 (pair … uoct1 (pair … uoct0 (pair … uoct1 (pair … uoct0 (pair … uoct1 (pair … uoct0 uoct1)))))).
218 ndefinition octAND2 ≝ pair … uoct0 (pair … uoct0 (pair … uoct2 (pair … uoct2 (pair … uoct0 (pair … uoct0 (pair … uoct2 uoct2)))))).
219 ndefinition octAND3 ≝ pair … uoct0 (pair … uoct1 (pair … uoct2 (pair … uoct3 (pair … uoct0 (pair … uoct1 (pair … uoct2 uoct3)))))).
220 ndefinition octAND4 ≝ pair … uoct0 (pair … uoct0 (pair … uoct0 (pair … uoct0 (pair … uoct4 (pair … uoct4 (pair … uoct4 uoct4)))))).
221 ndefinition octAND5 ≝ pair … uoct0 (pair … uoct1 (pair … uoct0 (pair … uoct1 (pair … uoct4 (pair … uoct5 (pair … uoct4 uoct5)))))).
222 ndefinition octAND6 ≝ pair … uoct0 (pair … uoct0 (pair … uoct2 (pair … uoct2 (pair … uoct4 (pair … uoct4 (pair … uoct6 uoct6)))))).
223 ndefinition octAND7 ≝ pair … uoct0 (pair … uoct1 (pair … uoct2 (pair … uoct3 (pair … uoct4 (pair … uoct5 (pair … uoct6 uoct7)))))).
226 farg2 (S_UN oct_UN) oct_UN oct_UN
227 (pair … octAND0 (pair … octAND1 (pair … octAND2 (pair … octAND3 (pair … octAND4 (pair … octAND5 (pair … octAND6 octAND7))))))).
229 (* ora e' possibile fare