1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| A.Asperti, C.Sacerdoti Coen, *)
8 (* ||A|| E.Tassi, S.Zacchiroli *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU Lesser General Public License Version 2.1 *)
13 (**************************************************************************)
15 include "Plogic/equality.ma".
17 inductive True: Prop ≝
20 inductive False: Prop ≝ .
23 ndefinition Not: Prop → Prop ≝
26 inductive Not (A:Prop): Prop ≝
27 nmk: (A → False) → Not A.
29 interpretation "logical not" 'not x = (Not x).
31 theorem absurd : ∀ A:Prop. A → ¬A → False.
32 #A #H #Hn elim Hn /2/ qed.
35 ntheorem absurd : ∀ A,C:Prop. A → ¬A → C.
36 #A #C #H #Hn nelim (Hn H).
39 theorem not_to_not : ∀A,B:Prop. (A → B) → ¬B →¬A.
42 inductive And (A,B:Prop) : Prop ≝
43 conj : A → B → And A B.
45 interpretation "logical and" 'and x y = (And x y).
47 theorem proj1: ∀A,B:Prop. A ∧ B → A.
51 theorem proj2: ∀ A,B:Prop. A ∧ B → B.
55 inductive Or (A,B:Prop) : Prop ≝
56 or_introl : A → (Or A B)
57 | or_intror : B → (Or A B).
59 interpretation "logical or" 'or x y = (Or x y).
61 definition decidable : Prop → Prop ≝
64 inductive ex (A:Type[0]) (P:A → Prop) : Prop ≝
65 ex_intro: ∀ x:A. P x → ex A P.
67 interpretation "exists" 'exists x = (ex ? x).
69 inductive ex2 (A:Type[0]) (P,Q:A \to Prop) : Prop ≝
70 ex_intro2: ∀ x:A. P x → Q x → ex2 A P Q.
73 λ A,B. (A → B) ∧ (B → A).
75 interpretation "iff" 'iff a b = (iff a b).