1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "logic/pts.ma".
17 include "nat/minus.ma".
19 ninductive D: nat → Prop ≝
21 | Dn: ∀n. D (n - 2) → D n.
23 naxiom dow: ∀n,m.∀p: D n. n = S m → False.
24 naxiom destr: ∀n. O = S n → False.
26 nlet rec f (n:nat) (p:D n) on p : nat ≝
27 match n return λm. n=m → nat with
29 | S m ⇒ λH. f (n - 2) ?] (refl_eq ? n).
31 [ #K; ncases (destr ? K)
32 | #n0; #p; #H; nassumption ]