1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "LambdaDelta-1/theory.ma".
22 let rec cbk (c: C) on c: nat \def (match c with [(CSort m) \Rightarrow m |
23 (CHead c0 _ _) \Rightarrow (cbk c0)]) in cbk.
28 let rec app1 (c: C) on c: (T \to T) \def (\lambda (t: T).(match c with
29 [(CSort _) \Rightarrow t | (CHead c0 k u) \Rightarrow (app1 c0 (THead k u
33 \forall (xs: TList).(\forall (ts: TList).(\forall (h: nat).(\forall (d:
34 nat).((eq TList (lifts h d xs) (lifts h d ts)) \to (eq TList xs ts)))))
36 \lambda (xs: TList).(TList_ind (\lambda (t: TList).(\forall (ts:
37 TList).(\forall (h: nat).(\forall (d: nat).((eq TList (lifts h d t) (lifts h
38 d ts)) \to (eq TList t ts)))))) (\lambda (ts: TList).(TList_ind (\lambda (t:
39 TList).(\forall (h: nat).(\forall (d: nat).((eq TList (lifts h d TNil) (lifts
40 h d t)) \to (eq TList TNil t))))) (\lambda (_: nat).(\lambda (_:
41 nat).(\lambda (H: (eq TList TNil TNil)).H))) (\lambda (t: T).(\lambda (t0:
42 TList).(\lambda (_: ((\forall (h: nat).(\forall (d: nat).((eq TList TNil
43 (lifts h d t0)) \to (eq TList TNil t0)))))).(\lambda (h: nat).(\lambda (d:
44 nat).(\lambda (H0: (eq TList TNil (TCons (lift h d t) (lifts h d t0)))).(let
45 H1 \def (eq_ind TList TNil (\lambda (ee: TList).(match ee in TList return
46 (\lambda (_: TList).Prop) with [TNil \Rightarrow True | (TCons _ _)
47 \Rightarrow False])) I (TCons (lift h d t) (lifts h d t0)) H0) in (False_ind
48 (eq TList TNil (TCons t t0)) H1)))))))) ts)) (\lambda (t: T).(\lambda (t0:
49 TList).(\lambda (H: ((\forall (ts: TList).(\forall (h: nat).(\forall (d:
50 nat).((eq TList (lifts h d t0) (lifts h d ts)) \to (eq TList t0
51 ts))))))).(\lambda (ts: TList).(TList_ind (\lambda (t1: TList).(\forall (h:
52 nat).(\forall (d: nat).((eq TList (lifts h d (TCons t t0)) (lifts h d t1))
53 \to (eq TList (TCons t t0) t1))))) (\lambda (h: nat).(\lambda (d:
54 nat).(\lambda (H0: (eq TList (TCons (lift h d t) (lifts h d t0)) TNil)).(let
55 H1 \def (eq_ind TList (TCons (lift h d t) (lifts h d t0)) (\lambda (ee:
56 TList).(match ee in TList return (\lambda (_: TList).Prop) with [TNil
57 \Rightarrow False | (TCons _ _) \Rightarrow True])) I TNil H0) in (False_ind
58 (eq TList (TCons t t0) TNil) H1))))) (\lambda (t1: T).(\lambda (t2:
59 TList).(\lambda (_: ((\forall (h: nat).(\forall (d: nat).((eq TList (TCons
60 (lift h d t) (lifts h d t0)) (lifts h d t2)) \to (eq TList (TCons t t0)
61 t2)))))).(\lambda (h: nat).(\lambda (d: nat).(\lambda (H1: (eq TList (TCons
62 (lift h d t) (lifts h d t0)) (TCons (lift h d t1) (lifts h d t2)))).(let H2
63 \def (f_equal TList T (\lambda (e: TList).(match e in TList return (\lambda
64 (_: TList).T) with [TNil \Rightarrow ((let rec lref_map (f: ((nat \to nat)))
65 (d0: nat) (t3: T) on t3: T \def (match t3 with [(TSort n) \Rightarrow (TSort
66 n) | (TLRef i) \Rightarrow (TLRef (match (blt i d0) with [true \Rightarrow i
67 | false \Rightarrow (f i)])) | (THead k u t4) \Rightarrow (THead k (lref_map
68 f d0 u) (lref_map f (s k d0) t4))]) in lref_map) (\lambda (x: nat).(plus x
69 h)) d t) | (TCons t3 _) \Rightarrow t3])) (TCons (lift h d t) (lifts h d t0))
70 (TCons (lift h d t1) (lifts h d t2)) H1) in ((let H3 \def (f_equal TList
71 TList (\lambda (e: TList).(match e in TList return (\lambda (_: TList).TList)
72 with [TNil \Rightarrow ((let rec lifts (h0: nat) (d0: nat) (ts0: TList) on
73 ts0: TList \def (match ts0 with [TNil \Rightarrow TNil | (TCons t3 ts1)
74 \Rightarrow (TCons (lift h0 d0 t3) (lifts h0 d0 ts1))]) in lifts) h d t0) |
75 (TCons _ t3) \Rightarrow t3])) (TCons (lift h d t) (lifts h d t0)) (TCons
76 (lift h d t1) (lifts h d t2)) H1) in (\lambda (H4: (eq T (lift h d t) (lift h
77 d t1))).(eq_ind T t (\lambda (t3: T).(eq TList (TCons t t0) (TCons t3 t2)))
78 (f_equal2 T TList TList TCons t t t0 t2 (refl_equal T t) (H t2 h d H3)) t1
79 (lift_inj t t1 h d H4)))) H2)))))))) ts))))) xs).
82 \forall (c: C).(\forall (t: T).(\forall (ts: TList).((nfs2 c (TApp ts t))
83 \to (land (nfs2 c ts) (nf2 c t)))))
85 \lambda (c: C).(\lambda (t: T).(\lambda (ts: TList).(TList_ind (\lambda (t0:
86 TList).((nfs2 c (TApp t0 t)) \to (land (nfs2 c t0) (nf2 c t)))) (\lambda (H:
87 (land (nf2 c t) True)).(let H0 \def H in (and_ind (nf2 c t) True (land True
88 (nf2 c t)) (\lambda (H1: (nf2 c t)).(\lambda (_: True).(conj True (nf2 c t) I
89 H1))) H0))) (\lambda (t0: T).(\lambda (t1: TList).(\lambda (H: (((nfs2 c
90 (TApp t1 t)) \to (land (nfs2 c t1) (nf2 c t))))).(\lambda (H0: (land (nf2 c
91 t0) (nfs2 c (TApp t1 t)))).(let H1 \def H0 in (and_ind (nf2 c t0) (nfs2 c
92 (TApp t1 t)) (land (land (nf2 c t0) (nfs2 c t1)) (nf2 c t)) (\lambda (H2:
93 (nf2 c t0)).(\lambda (H3: (nfs2 c (TApp t1 t))).(let H_x \def (H H3) in (let
94 H4 \def H_x in (and_ind (nfs2 c t1) (nf2 c t) (land (land (nf2 c t0) (nfs2 c
95 t1)) (nf2 c t)) (\lambda (H5: (nfs2 c t1)).(\lambda (H6: (nf2 c t)).(conj
96 (land (nf2 c t0) (nfs2 c t1)) (nf2 c t) (conj (nf2 c t0) (nfs2 c t1) H2 H5)
97 H6))) H4))))) H1)))))) ts))).
99 theorem pc3_nf2_unfold:
100 \forall (c: C).(\forall (t1: T).(\forall (t2: T).((pc3 c t1 t2) \to ((nf2 c
101 t2) \to (pr3 c t1 t2)))))
103 \lambda (c: C).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H: (pc3 c t1
104 t2)).(\lambda (H0: (nf2 c t2)).(let H1 \def H in (ex2_ind T (\lambda (t:
105 T).(pr3 c t1 t)) (\lambda (t: T).(pr3 c t2 t)) (pr3 c t1 t2) (\lambda (x:
106 T).(\lambda (H2: (pr3 c t1 x)).(\lambda (H3: (pr3 c t2 x)).(let H_y \def
107 (nf2_pr3_unfold c t2 x H3 H0) in (let H4 \def (eq_ind_r T x (\lambda (t:
108 T).(pr3 c t1 t)) H2 t2 H_y) in H4))))) H1)))))).
110 theorem pc3_pr3_conf:
111 \forall (c: C).(\forall (t: T).(\forall (t1: T).((pc3 c t t1) \to (\forall
112 (t2: T).((pr3 c t t2) \to (pc3 c t2 t1))))))
114 \lambda (c: C).(\lambda (t: T).(\lambda (t1: T).(\lambda (H: (pc3 c t
115 t1)).(\lambda (t2: T).(\lambda (H0: (pr3 c t t2)).(pc3_t t c t2 (pc3_pr3_x c
118 axiom pc3_gen_appls_sort_abst:
119 \forall (c: C).(\forall (vs: TList).(\forall (w: T).(\forall (u: T).(\forall
120 (n: nat).((pc3 c (THeads (Flat Appl) vs (TSort n)) (THead (Bind Abst) w u))
124 axiom pc3_gen_appls_lref_abst:
125 \forall (c: C).(\forall (d: C).(\forall (v: T).(\forall (i: nat).((getl i c
126 (CHead d (Bind Abst) v)) \to (\forall (vs: TList).(\forall (w: T).(\forall
127 (u: T).((pc3 c (THeads (Flat Appl) vs (TLRef i)) (THead (Bind Abst) w u)) \to
131 axiom pc3_gen_appls_lref_sort:
132 \forall (c: C).(\forall (d: C).(\forall (v: T).(\forall (i: nat).((getl i c
133 (CHead d (Bind Abst) v)) \to (\forall (vs: TList).(\forall (ws:
134 TList).(\forall (n: nat).((pc3 c (THeads (Flat Appl) vs (TLRef i)) (THeads
135 (Flat Appl) ws (TSort n))) \to False))))))))
138 inductive tys3 (g: G) (c: C): TList \to (T \to Prop) \def
139 | tys3_nil: \forall (u: T).(\forall (u0: T).((ty3 g c u u0) \to (tys3 g c
141 | tys3_cons: \forall (t: T).(\forall (u: T).((ty3 g c t u) \to (\forall (ts:
142 TList).((tys3 g c ts u) \to (tys3 g c (TCons t ts) u))))).
144 theorem tys3_gen_nil:
145 \forall (g: G).(\forall (c: C).(\forall (u: T).((tys3 g c TNil u) \to (ex T
146 (\lambda (u0: T).(ty3 g c u u0))))))
148 \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (H: (tys3 g c TNil
149 u)).(insert_eq TList TNil (\lambda (t: TList).(tys3 g c t u)) (\lambda (_:
150 TList).(ex T (\lambda (u0: T).(ty3 g c u u0)))) (\lambda (y: TList).(\lambda
151 (H0: (tys3 g c y u)).(tys3_ind g c (\lambda (t: TList).(\lambda (t0: T).((eq
152 TList t TNil) \to (ex T (\lambda (u0: T).(ty3 g c t0 u0)))))) (\lambda (u0:
153 T).(\lambda (u1: T).(\lambda (H1: (ty3 g c u0 u1)).(\lambda (_: (eq TList
154 TNil TNil)).(ex_intro T (\lambda (u2: T).(ty3 g c u0 u2)) u1 H1))))) (\lambda
155 (t: T).(\lambda (u0: T).(\lambda (_: (ty3 g c t u0)).(\lambda (ts:
156 TList).(\lambda (_: (tys3 g c ts u0)).(\lambda (_: (((eq TList ts TNil) \to
157 (ex T (\lambda (u1: T).(ty3 g c u0 u1)))))).(\lambda (H4: (eq TList (TCons t
158 ts) TNil)).(let H5 \def (eq_ind TList (TCons t ts) (\lambda (ee:
159 TList).(match ee in TList return (\lambda (_: TList).Prop) with [TNil
160 \Rightarrow False | (TCons _ _) \Rightarrow True])) I TNil H4) in (False_ind
161 (ex T (\lambda (u1: T).(ty3 g c u0 u1))) H5))))))))) y u H0))) H)))).
163 theorem tys3_gen_cons:
164 \forall (g: G).(\forall (c: C).(\forall (ts: TList).(\forall (t: T).(\forall
165 (u: T).((tys3 g c (TCons t ts) u) \to (land (ty3 g c t u) (tys3 g c ts
168 \lambda (g: G).(\lambda (c: C).(\lambda (ts: TList).(\lambda (t: T).(\lambda
169 (u: T).(\lambda (H: (tys3 g c (TCons t ts) u)).(insert_eq TList (TCons t ts)
170 (\lambda (t0: TList).(tys3 g c t0 u)) (\lambda (_: TList).(land (ty3 g c t u)
171 (tys3 g c ts u))) (\lambda (y: TList).(\lambda (H0: (tys3 g c y u)).(tys3_ind
172 g c (\lambda (t0: TList).(\lambda (t1: T).((eq TList t0 (TCons t ts)) \to
173 (land (ty3 g c t t1) (tys3 g c ts t1))))) (\lambda (u0: T).(\lambda (u1:
174 T).(\lambda (_: (ty3 g c u0 u1)).(\lambda (H2: (eq TList TNil (TCons t
175 ts))).(let H3 \def (eq_ind TList TNil (\lambda (ee: TList).(match ee in TList
176 return (\lambda (_: TList).Prop) with [TNil \Rightarrow True | (TCons _ _)
177 \Rightarrow False])) I (TCons t ts) H2) in (False_ind (land (ty3 g c t u0)
178 (tys3 g c ts u0)) H3)))))) (\lambda (t0: T).(\lambda (u0: T).(\lambda (H1:
179 (ty3 g c t0 u0)).(\lambda (ts0: TList).(\lambda (H2: (tys3 g c ts0
180 u0)).(\lambda (H3: (((eq TList ts0 (TCons t ts)) \to (land (ty3 g c t u0)
181 (tys3 g c ts u0))))).(\lambda (H4: (eq TList (TCons t0 ts0) (TCons t
182 ts))).(let H5 \def (f_equal TList T (\lambda (e: TList).(match e in TList
183 return (\lambda (_: TList).T) with [TNil \Rightarrow t0 | (TCons t1 _)
184 \Rightarrow t1])) (TCons t0 ts0) (TCons t ts) H4) in ((let H6 \def (f_equal
185 TList TList (\lambda (e: TList).(match e in TList return (\lambda (_:
186 TList).TList) with [TNil \Rightarrow ts0 | (TCons _ t1) \Rightarrow t1]))
187 (TCons t0 ts0) (TCons t ts) H4) in (\lambda (H7: (eq T t0 t)).(let H8 \def
188 (eq_ind TList ts0 (\lambda (t1: TList).((eq TList t1 (TCons t ts)) \to (land
189 (ty3 g c t u0) (tys3 g c ts u0)))) H3 ts H6) in (let H9 \def (eq_ind TList
190 ts0 (\lambda (t1: TList).(tys3 g c t1 u0)) H2 ts H6) in (let H10 \def (eq_ind
191 T t0 (\lambda (t1: T).(ty3 g c t1 u0)) H1 t H7) in (conj (ty3 g c t u0) (tys3
192 g c ts u0) H10 H9)))))) H5))))))))) y u H0))) H)))))).
194 theorem ty3_gen_appl_nf2:
195 \forall (g: G).(\forall (c: C).(\forall (w: T).(\forall (v: T).(\forall (x:
196 T).((ty3 g c (THead (Flat Appl) w v) x) \to (ex4_2 T T (\lambda (u:
197 T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
198 (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
199 (\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
200 T).(nf2 c (THead (Bind Abst) u t))))))))))
202 \lambda (g: G).(\lambda (c: C).(\lambda (w: T).(\lambda (v: T).(\lambda (x:
203 T).(\lambda (H: (ty3 g c (THead (Flat Appl) w v) x)).(ex3_2_ind T T (\lambda
204 (u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t))
205 x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
206 (\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (ex4_2 T T (\lambda (u:
207 T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
208 (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
209 (\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
210 T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x0: T).(\lambda (x1:
211 T).(\lambda (H0: (pc3 c (THead (Flat Appl) w (THead (Bind Abst) x0 x1))
212 x)).(\lambda (H1: (ty3 g c v (THead (Bind Abst) x0 x1))).(\lambda (H2: (ty3 g
213 c w x0)).(let H_x \def (ty3_correct g c v (THead (Bind Abst) x0 x1) H1) in
214 (let H3 \def H_x in (ex_ind T (\lambda (t: T).(ty3 g c (THead (Bind Abst) x0
215 x1) t)) (ex4_2 T T (\lambda (u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl)
216 w (THead (Bind Abst) u t)) x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v
217 (THead (Bind Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3 g c w u)))
218 (\lambda (u: T).(\lambda (t: T).(nf2 c (THead (Bind Abst) u t))))) (\lambda
219 (x2: T).(\lambda (H4: (ty3 g c (THead (Bind Abst) x0 x1) x2)).(let H_x0 \def
220 (ty3_correct g c w x0 H2) in (let H5 \def H_x0 in (ex_ind T (\lambda (t:
221 T).(ty3 g c x0 t)) (ex4_2 T T (\lambda (u: T).(\lambda (t: T).(pc3 c (THead
222 (Flat Appl) w (THead (Bind Abst) u t)) x))) (\lambda (u: T).(\lambda (t:
223 T).(ty3 g c v (THead (Bind Abst) u t)))) (\lambda (u: T).(\lambda (_: T).(ty3
224 g c w u))) (\lambda (u: T).(\lambda (t: T).(nf2 c (THead (Bind Abst) u t)))))
225 (\lambda (x3: T).(\lambda (H6: (ty3 g c x0 x3)).(let H7 \def (ty3_sn3 g c
226 (THead (Bind Abst) x0 x1) x2 H4) in (let H_x1 \def (nf2_sn3 c (THead (Bind
227 Abst) x0 x1) H7) in (let H8 \def H_x1 in (ex2_ind T (\lambda (u: T).(pr3 c
228 (THead (Bind Abst) x0 x1) u)) (\lambda (u: T).(nf2 c u)) (ex4_2 T T (\lambda
229 (u: T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t))
230 x))) (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
231 (\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
232 T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x4: T).(\lambda (H9: (pr3 c
233 (THead (Bind Abst) x0 x1) x4)).(\lambda (H10: (nf2 c x4)).(let H11 \def
234 (pr3_gen_abst c x0 x1 x4 H9) in (ex3_2_ind T T (\lambda (u2: T).(\lambda (t2:
235 T).(eq T x4 (THead (Bind Abst) u2 t2)))) (\lambda (u2: T).(\lambda (_:
236 T).(pr3 c x0 u2))) (\lambda (_: T).(\lambda (t2: T).(\forall (b: B).(\forall
237 (u: T).(pr3 (CHead c (Bind b) u) x1 t2))))) (ex4_2 T T (\lambda (u:
238 T).(\lambda (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x)))
239 (\lambda (u: T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t))))
240 (\lambda (u: T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t:
241 T).(nf2 c (THead (Bind Abst) u t))))) (\lambda (x5: T).(\lambda (x6:
242 T).(\lambda (H12: (eq T x4 (THead (Bind Abst) x5 x6))).(\lambda (H13: (pr3 c
243 x0 x5)).(\lambda (H14: ((\forall (b: B).(\forall (u: T).(pr3 (CHead c (Bind
244 b) u) x1 x6))))).(let H15 \def (eq_ind T x4 (\lambda (t: T).(nf2 c t)) H10
245 (THead (Bind Abst) x5 x6) H12) in (let H16 \def (pr3_head_12 c x0 x5 H13
246 (Bind Abst) x1 x6 (H14 Abst x5)) in (ex4_2_intro T T (\lambda (u: T).(\lambda
247 (t: T).(pc3 c (THead (Flat Appl) w (THead (Bind Abst) u t)) x))) (\lambda (u:
248 T).(\lambda (t: T).(ty3 g c v (THead (Bind Abst) u t)))) (\lambda (u:
249 T).(\lambda (_: T).(ty3 g c w u))) (\lambda (u: T).(\lambda (t: T).(nf2 c
250 (THead (Bind Abst) u t)))) x5 x6 (pc3_pr3_conf c (THead (Flat Appl) w (THead
251 (Bind Abst) x0 x1)) x H0 (THead (Flat Appl) w (THead (Bind Abst) x5 x6))
252 (pr3_thin_dx c (THead (Bind Abst) x0 x1) (THead (Bind Abst) x5 x6) H16 w
253 Appl)) (ty3_conv g c (THead (Bind Abst) x5 x6) x2 (ty3_sred_pr3 c (THead
254 (Bind Abst) x0 x1) (THead (Bind Abst) x5 x6) H16 g x2 H4) v (THead (Bind
255 Abst) x0 x1) H1 (pc3_pr3_r c (THead (Bind Abst) x0 x1) (THead (Bind Abst) x5
256 x6) H16)) (ty3_conv g c x5 x3 (ty3_sred_pr3 c x0 x5 H13 g x3 H6) w x0 H2
257 (pc3_pr3_r c x0 x5 H13)) H15)))))))) H11))))) H8)))))) H5))))) H3))))))))
258 (ty3_gen_appl g c w v x H))))))).
260 theorem ty3_inv_lref_nf2_pc3:
261 \forall (g: G).(\forall (c: C).(\forall (u1: T).(\forall (i: nat).((ty3 g c
262 (TLRef i) u1) \to ((nf2 c (TLRef i)) \to (\forall (u2: T).((nf2 c u2) \to
263 ((pc3 c u1 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))))
265 \lambda (g: G).(\lambda (c: C).(\lambda (u1: T).(\lambda (i: nat).(\lambda
266 (H: (ty3 g c (TLRef i) u1)).(insert_eq T (TLRef i) (\lambda (t: T).(ty3 g c t
267 u1)) (\lambda (t: T).((nf2 c t) \to (\forall (u2: T).((nf2 c u2) \to ((pc3 c
268 u1 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))) (\lambda
269 (y: T).(\lambda (H0: (ty3 g c y u1)).(ty3_ind g (\lambda (c0: C).(\lambda (t:
270 T).(\lambda (t0: T).((eq T t (TLRef i)) \to ((nf2 c0 t) \to (\forall (u2:
271 T).((nf2 c0 u2) \to ((pc3 c0 t0 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift
272 (S i) O u)))))))))))) (\lambda (c0: C).(\lambda (t2: T).(\lambda (t:
273 T).(\lambda (_: (ty3 g c0 t2 t)).(\lambda (_: (((eq T t2 (TLRef i)) \to ((nf2
274 c0 t2) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t u2) \to (ex T
275 (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda (u: T).(\lambda
276 (t1: T).(\lambda (H3: (ty3 g c0 u t1)).(\lambda (H4: (((eq T u (TLRef i)) \to
277 ((nf2 c0 u) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t1 u2) \to (ex T
278 (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (H5: (pc3 c0
279 t1 t2)).(\lambda (H6: (eq T u (TLRef i))).(\lambda (H7: (nf2 c0 u)).(\lambda
280 (u2: T).(\lambda (H8: (nf2 c0 u2)).(\lambda (H9: (pc3 c0 t2 u2)).(let H10
281 \def (eq_ind T u (\lambda (t0: T).(nf2 c0 t0)) H7 (TLRef i) H6) in (let H11
282 \def (eq_ind T u (\lambda (t0: T).((eq T t0 (TLRef i)) \to ((nf2 c0 t0) \to
283 (\forall (u3: T).((nf2 c0 u3) \to ((pc3 c0 t1 u3) \to (ex T (\lambda (u0:
284 T).(eq T u3 (lift (S i) O u0)))))))))) H4 (TLRef i) H6) in (let H12 \def
285 (eq_ind T u (\lambda (t0: T).(ty3 g c0 t0 t1)) H3 (TLRef i) H6) in (let H_y
286 \def (H11 (refl_equal T (TLRef i)) H10 u2 H8) in (H_y (pc3_t t2 c0 t1 H5 u2
287 H9))))))))))))))))))))) (\lambda (c0: C).(\lambda (m: nat).(\lambda (H1: (eq
288 T (TSort m) (TLRef i))).(\lambda (_: (nf2 c0 (TSort m))).(\lambda (u2:
289 T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0 (TSort (next g m))
290 u2)).(let H5 \def (eq_ind T (TSort m) (\lambda (ee: T).(match ee in T return
291 (\lambda (_: T).Prop) with [(TSort _) \Rightarrow True | (TLRef _)
292 \Rightarrow False | (THead _ _ _) \Rightarrow False])) I (TLRef i) H1) in
293 (False_ind (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u)))) H5)))))))))
294 (\lambda (n: nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda
295 (H1: (getl n c0 (CHead d (Bind Abbr) u))).(\lambda (t: T).(\lambda (_: (ty3 g
296 d u t)).(\lambda (_: (((eq T u (TLRef i)) \to ((nf2 d u) \to (\forall (u2:
297 T).((nf2 d u2) \to ((pc3 d t u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S
298 i) O u0))))))))))).(\lambda (H4: (eq T (TLRef n) (TLRef i))).(\lambda (H5:
299 (nf2 c0 (TLRef n))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (H7:
300 (pc3 c0 (lift (S n) O t) u2)).(let H8 \def (f_equal T nat (\lambda (e:
301 T).(match e in T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow n |
302 (TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow n])) (TLRef n) (TLRef
303 i) H4) in (let H9 \def (eq_ind nat n (\lambda (n0: nat).(pc3 c0 (lift (S n0)
304 O t) u2)) H7 i H8) in (let H10 \def (eq_ind nat n (\lambda (n0: nat).(nf2 c0
305 (TLRef n0))) H5 i H8) in (let H11 \def (eq_ind nat n (\lambda (n0: nat).(getl
306 n0 c0 (CHead d (Bind Abbr) u))) H1 i H8) in (nf2_gen_lref c0 d u i H11 H10
307 (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))))))))))))))
308 (\lambda (n: nat).(\lambda (c0: C).(\lambda (d: C).(\lambda (u: T).(\lambda
309 (H1: (getl n c0 (CHead d (Bind Abst) u))).(\lambda (t: T).(\lambda (_: (ty3 g
310 d u t)).(\lambda (_: (((eq T u (TLRef i)) \to ((nf2 d u) \to (\forall (u2:
311 T).((nf2 d u2) \to ((pc3 d t u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S
312 i) O u0))))))))))).(\lambda (H4: (eq T (TLRef n) (TLRef i))).(\lambda (H5:
313 (nf2 c0 (TLRef n))).(\lambda (u2: T).(\lambda (H6: (nf2 c0 u2)).(\lambda (H7:
314 (pc3 c0 (lift (S n) O u) u2)).(let H8 \def (f_equal T nat (\lambda (e:
315 T).(match e in T return (\lambda (_: T).nat) with [(TSort _) \Rightarrow n |
316 (TLRef n0) \Rightarrow n0 | (THead _ _ _) \Rightarrow n])) (TLRef n) (TLRef
317 i) H4) in (let H9 \def (eq_ind nat n (\lambda (n0: nat).(pc3 c0 (lift (S n0)
318 O u) u2)) H7 i H8) in (let H10 \def (eq_ind nat n (\lambda (n0: nat).(nf2 c0
319 (TLRef n0))) H5 i H8) in (let H11 \def (eq_ind nat n (\lambda (n0: nat).(getl
320 n0 c0 (CHead d (Bind Abst) u))) H1 i H8) in (let H_y \def (pc3_nf2_unfold c0
321 (lift (S i) O u) u2 H9 H6) in (let H12 \def (pr3_gen_lift c0 u u2 (S i) O H_y
322 d (getl_drop Abst c0 d u i H11)) in (ex2_ind T (\lambda (t2: T).(eq T u2
323 (lift (S i) O t2))) (\lambda (t2: T).(pr3 d u t2)) (ex T (\lambda (u0: T).(eq
324 T u2 (lift (S i) O u0)))) (\lambda (x: T).(\lambda (H13: (eq T u2 (lift (S i)
325 O x))).(\lambda (_: (pr3 d u x)).(eq_ind_r T (lift (S i) O x) (\lambda (t0:
326 T).(ex T (\lambda (u0: T).(eq T t0 (lift (S i) O u0))))) (ex_intro T (\lambda
327 (u0: T).(eq T (lift (S i) O x) (lift (S i) O u0))) x (refl_equal T (lift (S
328 i) O x))) u2 H13)))) H12)))))))))))))))))))) (\lambda (c0: C).(\lambda (u:
329 T).(\lambda (t: T).(\lambda (_: (ty3 g c0 u t)).(\lambda (_: (((eq T u (TLRef
330 i)) \to ((nf2 c0 u) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t u2) \to
331 (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (b:
332 B).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (ty3 g (CHead c0 (Bind b)
333 u) t1 t2)).(\lambda (_: (((eq T t1 (TLRef i)) \to ((nf2 (CHead c0 (Bind b) u)
334 t1) \to (\forall (u2: T).((nf2 (CHead c0 (Bind b) u) u2) \to ((pc3 (CHead c0
335 (Bind b) u) t2 u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O
336 u0))))))))))).(\lambda (H5: (eq T (THead (Bind b) u t1) (TLRef i))).(\lambda
337 (_: (nf2 c0 (THead (Bind b) u t1))).(\lambda (u2: T).(\lambda (_: (nf2 c0
338 u2)).(\lambda (_: (pc3 c0 (THead (Bind b) u t2) u2)).(let H9 \def (eq_ind T
339 (THead (Bind b) u t1) (\lambda (ee: T).(match ee in T return (\lambda (_:
340 T).Prop) with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False |
341 (THead _ _ _) \Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T
342 (\lambda (u0: T).(eq T u2 (lift (S i) O u0)))) H9))))))))))))))))) (\lambda
343 (c0: C).(\lambda (w: T).(\lambda (u: T).(\lambda (_: (ty3 g c0 w u)).(\lambda
344 (_: (((eq T w (TLRef i)) \to ((nf2 c0 w) \to (\forall (u2: T).((nf2 c0 u2)
345 \to ((pc3 c0 u u2) \to (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O
346 u0))))))))))).(\lambda (v: T).(\lambda (t: T).(\lambda (_: (ty3 g c0 v (THead
347 (Bind Abst) u t))).(\lambda (_: (((eq T v (TLRef i)) \to ((nf2 c0 v) \to
348 (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 (THead (Bind Abst) u t) u2) \to
349 (ex T (\lambda (u0: T).(eq T u2 (lift (S i) O u0))))))))))).(\lambda (H5: (eq
350 T (THead (Flat Appl) w v) (TLRef i))).(\lambda (_: (nf2 c0 (THead (Flat Appl)
351 w v))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0 (THead
352 (Flat Appl) w (THead (Bind Abst) u t)) u2)).(let H9 \def (eq_ind T (THead
353 (Flat Appl) w v) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop)
354 with [(TSort _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _
355 _) \Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T (\lambda (u0:
356 T).(eq T u2 (lift (S i) O u0)))) H9)))))))))))))))) (\lambda (c0: C).(\lambda
357 (t1: T).(\lambda (t2: T).(\lambda (_: (ty3 g c0 t1 t2)).(\lambda (_: (((eq T
358 t1 (TLRef i)) \to ((nf2 c0 t1) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0
359 t2 u2) \to (ex T (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda
360 (t0: T).(\lambda (_: (ty3 g c0 t2 t0)).(\lambda (_: (((eq T t2 (TLRef i)) \to
361 ((nf2 c0 t2) \to (\forall (u2: T).((nf2 c0 u2) \to ((pc3 c0 t0 u2) \to (ex T
362 (\lambda (u: T).(eq T u2 (lift (S i) O u))))))))))).(\lambda (H5: (eq T
363 (THead (Flat Cast) t2 t1) (TLRef i))).(\lambda (_: (nf2 c0 (THead (Flat Cast)
364 t2 t1))).(\lambda (u2: T).(\lambda (_: (nf2 c0 u2)).(\lambda (_: (pc3 c0
365 (THead (Flat Cast) t0 t2) u2)).(let H9 \def (eq_ind T (THead (Flat Cast) t2
366 t1) (\lambda (ee: T).(match ee in T return (\lambda (_: T).Prop) with [(TSort
367 _) \Rightarrow False | (TLRef _) \Rightarrow False | (THead _ _ _)
368 \Rightarrow True])) I (TLRef i) H5) in (False_ind (ex T (\lambda (u: T).(eq T
369 u2 (lift (S i) O u)))) H9))))))))))))))) c y u1 H0))) H))))).
371 theorem ty3_inv_lref_nf2:
372 \forall (g: G).(\forall (c: C).(\forall (u: T).(\forall (i: nat).((ty3 g c
373 (TLRef i) u) \to ((nf2 c (TLRef i)) \to ((nf2 c u) \to (ex T (\lambda (u0:
374 T).(eq T u (lift (S i) O u0))))))))))
376 \lambda (g: G).(\lambda (c: C).(\lambda (u: T).(\lambda (i: nat).(\lambda
377 (H: (ty3 g c (TLRef i) u)).(\lambda (H0: (nf2 c (TLRef i))).(\lambda (H1:
378 (nf2 c u)).(ty3_inv_lref_nf2_pc3 g c u i H H0 u H1 (pc3_refl c u)))))))).
380 theorem ty3_inv_appls_lref_nf2:
381 \forall (g: G).(\forall (c: C).(\forall (vs: TList).(\forall (u1:
382 T).(\forall (i: nat).((ty3 g c (THeads (Flat Appl) vs (TLRef i)) u1) \to
383 ((nf2 c (TLRef i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u: T).(nf2 c (lift (S
384 i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) vs (lift (S i) O u))
387 \lambda (g: G).(\lambda (c: C).(\lambda (vs: TList).(TList_ind (\lambda (t:
388 TList).(\forall (u1: T).(\forall (i: nat).((ty3 g c (THeads (Flat Appl) t
389 (TLRef i)) u1) \to ((nf2 c (TLRef i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u:
390 T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) t
391 (lift (S i) O u)) u1))))))))) (\lambda (u1: T).(\lambda (i: nat).(\lambda (H:
392 (ty3 g c (TLRef i) u1)).(\lambda (H0: (nf2 c (TLRef i))).(\lambda (H1: (nf2 c
393 u1)).(let H_x \def (ty3_inv_lref_nf2 g c u1 i H H0 H1) in (let H2 \def H_x in
394 (ex_ind T (\lambda (u0: T).(eq T u1 (lift (S i) O u0))) (ex2 T (\lambda (u:
395 T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (lift (S i) O u) u1)))
396 (\lambda (x: T).(\lambda (H3: (eq T u1 (lift (S i) O x))).(let H4 \def
397 (eq_ind T u1 (\lambda (t: T).(nf2 c t)) H1 (lift (S i) O x) H3) in (eq_ind_r
398 T (lift (S i) O x) (\lambda (t: T).(ex2 T (\lambda (u: T).(nf2 c (lift (S i)
399 O u))) (\lambda (u: T).(pc3 c (lift (S i) O u) t)))) (ex_intro2 T (\lambda
400 (u: T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3 c (lift (S i) O u)
401 (lift (S i) O x))) x H4 (pc3_refl c (lift (S i) O x))) u1 H3)))) H2))))))))
402 (\lambda (t: T).(\lambda (t0: TList).(\lambda (H: ((\forall (u1: T).(\forall
403 (i: nat).((ty3 g c (THeads (Flat Appl) t0 (TLRef i)) u1) \to ((nf2 c (TLRef
404 i)) \to ((nf2 c u1) \to (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u)))
405 (\lambda (u: T).(pc3 c (THeads (Flat Appl) t0 (lift (S i) O u))
406 u1)))))))))).(\lambda (u1: T).(\lambda (i: nat).(\lambda (H0: (ty3 g c (THead
407 (Flat Appl) t (THeads (Flat Appl) t0 (TLRef i))) u1)).(\lambda (H1: (nf2 c
408 (TLRef i))).(\lambda (_: (nf2 c u1)).(let H_x \def (ty3_gen_appl_nf2 g c t
409 (THeads (Flat Appl) t0 (TLRef i)) u1 H0) in (let H3 \def H_x in (ex4_2_ind T
410 T (\lambda (u: T).(\lambda (t1: T).(pc3 c (THead (Flat Appl) t (THead (Bind
411 Abst) u t1)) u1))) (\lambda (u: T).(\lambda (t1: T).(ty3 g c (THeads (Flat
412 Appl) t0 (TLRef i)) (THead (Bind Abst) u t1)))) (\lambda (u: T).(\lambda (_:
413 T).(ty3 g c t u))) (\lambda (u: T).(\lambda (t1: T).(nf2 c (THead (Bind Abst)
414 u t1)))) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u))) (\lambda (u:
415 T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O u)))
416 u1))) (\lambda (x0: T).(\lambda (x1: T).(\lambda (H4: (pc3 c (THead (Flat
417 Appl) t (THead (Bind Abst) x0 x1)) u1)).(\lambda (H5: (ty3 g c (THeads (Flat
418 Appl) t0 (TLRef i)) (THead (Bind Abst) x0 x1))).(\lambda (_: (ty3 g c t
419 x0)).(\lambda (H7: (nf2 c (THead (Bind Abst) x0 x1))).(let H8 \def
420 (nf2_gen_abst c x0 x1 H7) in (and_ind (nf2 c x0) (nf2 (CHead c (Bind Abst)
421 x0) x1) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O u))) (\lambda (u: T).(pc3
422 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O u))) u1)))
423 (\lambda (H9: (nf2 c x0)).(\lambda (H10: (nf2 (CHead c (Bind Abst) x0)
424 x1)).(let H_y \def (H (THead (Bind Abst) x0 x1) i H5 H1) in (let H11 \def
425 (H_y (nf2_abst_shift c x0 H9 x1 H10)) in (ex2_ind T (\lambda (u: T).(nf2 c
426 (lift (S i) O u))) (\lambda (u: T).(pc3 c (THeads (Flat Appl) t0 (lift (S i)
427 O u)) (THead (Bind Abst) x0 x1))) (ex2 T (\lambda (u: T).(nf2 c (lift (S i) O
428 u))) (\lambda (u: T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift
429 (S i) O u))) u1))) (\lambda (x: T).(\lambda (H12: (nf2 c (lift (S i) O
430 x))).(\lambda (H13: (pc3 c (THeads (Flat Appl) t0 (lift (S i) O x)) (THead
431 (Bind Abst) x0 x1))).(ex_intro2 T (\lambda (u: T).(nf2 c (lift (S i) O u)))
432 (\lambda (u: T).(pc3 c (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S
433 i) O u))) u1)) x H12 (pc3_t (THead (Flat Appl) t (THead (Bind Abst) x0 x1)) c
434 (THead (Flat Appl) t (THeads (Flat Appl) t0 (lift (S i) O x))) (pc3_thin_dx c
435 (THeads (Flat Appl) t0 (lift (S i) O x)) (THead (Bind Abst) x0 x1) H13 t
436 Appl) u1 H4))))) H11))))) H8)))))))) H3))))))))))) vs))).
438 theorem ty3_inv_lref_lref_nf2:
439 \forall (g: G).(\forall (c: C).(\forall (i: nat).(\forall (j: nat).((ty3 g c
440 (TLRef i) (TLRef j)) \to ((nf2 c (TLRef i)) \to ((nf2 c (TLRef j)) \to (lt i
443 \lambda (g: G).(\lambda (c: C).(\lambda (i: nat).(\lambda (j: nat).(\lambda
444 (H: (ty3 g c (TLRef i) (TLRef j))).(\lambda (H0: (nf2 c (TLRef i))).(\lambda
445 (H1: (nf2 c (TLRef j))).(let H_x \def (ty3_inv_lref_nf2 g c (TLRef j) i H H0
446 H1) in (let H2 \def H_x in (ex_ind T (\lambda (u0: T).(eq T (TLRef j) (lift
447 (S i) O u0))) (lt i j) (\lambda (x: T).(\lambda (H3: (eq T (TLRef j) (lift (S
448 i) O x))).(let H_x0 \def (lift_gen_lref x O (S i) j H3) in (let H4 \def H_x0
449 in (or_ind (land (lt j O) (eq T x (TLRef j))) (land (le (plus O (S i)) j) (eq
450 T x (TLRef (minus j (S i))))) (lt i j) (\lambda (H5: (land (lt j O) (eq T x
451 (TLRef j)))).(and_ind (lt j O) (eq T x (TLRef j)) (lt i j) (\lambda (H6: (lt
452 j O)).(\lambda (_: (eq T x (TLRef j))).(lt_x_O j H6 (lt i j)))) H5)) (\lambda
453 (H5: (land (le (plus O (S i)) j) (eq T x (TLRef (minus j (S i)))))).(and_ind
454 (le (plus O (S i)) j) (eq T x (TLRef (minus j (S i)))) (lt i j) (\lambda (H6:
455 (le (plus O (S i)) j)).(\lambda (_: (eq T x (TLRef (minus j (S i))))).H6))
456 H5)) H4))))) H2))))))))).
459 \forall (g: G).(\forall (c: C).((wf3 g c c) \to (\forall (t1: T).(\forall
460 (t2: T).((ty3 g c t1 t2) \to (ty3 g (CSort (cbk c)) (app1 c t1) (app1 c
463 \lambda (g: G).(\lambda (c: C).(\lambda (H: (wf3 g c c)).(insert_eq C c
464 (\lambda (c0: C).(wf3 g c0 c)) (\lambda (c0: C).(\forall (t1: T).(\forall
465 (t2: T).((ty3 g c0 t1 t2) \to (ty3 g (CSort (cbk c0)) (app1 c0 t1) (app1 c0
466 t2)))))) (\lambda (y: C).(\lambda (H0: (wf3 g y c)).(wf3_ind g (\lambda (c0:
467 C).(\lambda (c1: C).((eq C c0 c1) \to (\forall (t1: T).(\forall (t2: T).((ty3
468 g c0 t1 t2) \to (ty3 g (CSort (cbk c0)) (app1 c0 t1) (app1 c0 t2))))))))
469 (\lambda (m: nat).(\lambda (_: (eq C (CSort m) (CSort m))).(\lambda (t1:
470 T).(\lambda (t2: T).(\lambda (H2: (ty3 g (CSort m) t1 t2)).H2))))) (\lambda
471 (c1: C).(\lambda (c2: C).(\lambda (H1: (wf3 g c1 c2)).(\lambda (H2: (((eq C
472 c1 c2) \to (\forall (t1: T).(\forall (t2: T).((ty3 g c1 t1 t2) \to (ty3 g
473 (CSort (cbk c1)) (app1 c1 t1) (app1 c1 t2)))))))).(\lambda (u: T).(\lambda
474 (t: T).(\lambda (H3: (ty3 g c1 u t)).(\lambda (b: B).(\lambda (H4: (eq C
475 (CHead c1 (Bind b) u) (CHead c2 (Bind b) u))).(\lambda (t1: T).(\lambda (t2:
476 T).(\lambda (H5: (ty3 g (CHead c1 (Bind b) u) t1 t2)).(let H6 \def (f_equal C
477 C (\lambda (e: C).(match e in C return (\lambda (_: C).C) with [(CSort _)
478 \Rightarrow c1 | (CHead c0 _ _) \Rightarrow c0])) (CHead c1 (Bind b) u)
479 (CHead c2 (Bind b) u) H4) in (let H7 \def (eq_ind_r C c2 (\lambda (c0:
480 C).((eq C c1 c0) \to (\forall (t3: T).(\forall (t4: T).((ty3 g c1 t3 t4) \to
481 (ty3 g (CSort (cbk c1)) (app1 c1 t3) (app1 c1 t4))))))) H2 c1 H6) in (let H8
482 \def (eq_ind_r C c2 (\lambda (c0: C).(wf3 g c1 c0)) H1 c1 H6) in (ex_ind T
483 (\lambda (t0: T).(ty3 g (CHead c1 (Bind b) u) t2 t0)) (ty3 g (CSort (cbk c1))
484 (app1 c1 (THead (Bind b) u t1)) (app1 c1 (THead (Bind b) u t2))) (\lambda (x:
485 T).(\lambda (_: (ty3 g (CHead c1 (Bind b) u) t2 x)).(H7 (refl_equal C c1)
486 (THead (Bind b) u t1) (THead (Bind b) u t2) (ty3_bind g c1 u t H3 b t1 t2
487 H5)))) (ty3_correct g (CHead c1 (Bind b) u) t1 t2 H5)))))))))))))))))
488 (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1: (wf3 g c1 c2)).(\lambda (H2:
489 (((eq C c1 c2) \to (\forall (t1: T).(\forall (t2: T).((ty3 g c1 t1 t2) \to
490 (ty3 g (CSort (cbk c1)) (app1 c1 t1) (app1 c1 t2)))))))).(\lambda (u:
491 T).(\lambda (H3: ((\forall (t: T).((ty3 g c1 u t) \to False)))).(\lambda (b:
492 B).(\lambda (H4: (eq C (CHead c1 (Bind b) u) (CHead c2 (Bind Void) (TSort
493 O)))).(\lambda (t1: T).(\lambda (t2: T).(\lambda (H5: (ty3 g (CHead c1 (Bind
494 b) u) t1 t2)).(let H6 \def (f_equal C C (\lambda (e: C).(match e in C return
495 (\lambda (_: C).C) with [(CSort _) \Rightarrow c1 | (CHead c0 _ _)
496 \Rightarrow c0])) (CHead c1 (Bind b) u) (CHead c2 (Bind Void) (TSort O)) H4)
497 in ((let H7 \def (f_equal C B (\lambda (e: C).(match e in C return (\lambda
498 (_: C).B) with [(CSort _) \Rightarrow b | (CHead _ k _) \Rightarrow (match k
499 in K return (\lambda (_: K).B) with [(Bind b0) \Rightarrow b0 | (Flat _)
500 \Rightarrow b])])) (CHead c1 (Bind b) u) (CHead c2 (Bind Void) (TSort O)) H4)
501 in ((let H8 \def (f_equal C T (\lambda (e: C).(match e in C return (\lambda
502 (_: C).T) with [(CSort _) \Rightarrow u | (CHead _ _ t) \Rightarrow t]))
503 (CHead c1 (Bind b) u) (CHead c2 (Bind Void) (TSort O)) H4) in (\lambda (H9:
504 (eq B b Void)).(\lambda (H10: (eq C c1 c2)).(let H11 \def (eq_ind B b
505 (\lambda (b0: B).(ty3 g (CHead c1 (Bind b0) u) t1 t2)) H5 Void H9) in
506 (eq_ind_r B Void (\lambda (b0: B).(ty3 g (CSort (cbk (CHead c1 (Bind b0) u)))
507 (app1 (CHead c1 (Bind b0) u) t1) (app1 (CHead c1 (Bind b0) u) t2))) (let H12
508 \def (eq_ind T u (\lambda (t: T).(ty3 g (CHead c1 (Bind Void) t) t1 t2)) H11
509 (TSort O) H8) in (let H13 \def (eq_ind T u (\lambda (t: T).(\forall (t0:
510 T).((ty3 g c1 t t0) \to False))) H3 (TSort O) H8) in (eq_ind_r T (TSort O)
511 (\lambda (t: T).(ty3 g (CSort (cbk (CHead c1 (Bind Void) t))) (app1 (CHead c1
512 (Bind Void) t) t1) (app1 (CHead c1 (Bind Void) t) t2))) (let H14 \def
513 (eq_ind_r C c2 (\lambda (c0: C).((eq C c1 c0) \to (\forall (t3: T).(\forall
514 (t4: T).((ty3 g c1 t3 t4) \to (ty3 g (CSort (cbk c1)) (app1 c1 t3) (app1 c1
515 t4))))))) H2 c1 H10) in (let H15 \def (eq_ind_r C c2 (\lambda (c0: C).(wf3 g
516 c1 c0)) H1 c1 H10) in (ex_ind T (\lambda (t: T).(ty3 g (CHead c1 (Bind Void)
517 (TSort O)) t2 t)) (ty3 g (CSort (cbk c1)) (app1 c1 (THead (Bind Void) (TSort
518 O) t1)) (app1 c1 (THead (Bind Void) (TSort O) t2))) (\lambda (x: T).(\lambda
519 (_: (ty3 g (CHead c1 (Bind Void) (TSort O)) t2 x)).(H14 (refl_equal C c1)
520 (THead (Bind Void) (TSort O) t1) (THead (Bind Void) (TSort O) t2) (ty3_bind g
521 c1 (TSort O) (TSort (next g O)) (ty3_sort g c1 O) Void t1 t2 H12))))
522 (ty3_correct g (CHead c1 (Bind Void) (TSort O)) t1 t2 H12)))) u H8))) b
523 H9))))) H7)) H6))))))))))))) (\lambda (c1: C).(\lambda (c2: C).(\lambda (H1:
524 (wf3 g c1 c2)).(\lambda (H2: (((eq C c1 c2) \to (\forall (t1: T).(\forall
525 (t2: T).((ty3 g c1 t1 t2) \to (ty3 g (CSort (cbk c1)) (app1 c1 t1) (app1 c1
526 t2)))))))).(\lambda (u: T).(\lambda (f: F).(\lambda (H3: (eq C (CHead c1
527 (Flat f) u) c2)).(\lambda (t1: T).(\lambda (t2: T).(\lambda (_: (ty3 g (CHead
528 c1 (Flat f) u) t1 t2)).(let H5 \def (f_equal C C (\lambda (e: C).e) (CHead c1
529 (Flat f) u) c2 H3) in (let H6 \def (eq_ind_r C c2 (\lambda (c0: C).((eq C c1
530 c0) \to (\forall (t3: T).(\forall (t4: T).((ty3 g c1 t3 t4) \to (ty3 g (CSort
531 (cbk c1)) (app1 c1 t3) (app1 c1 t4))))))) H2 (CHead c1 (Flat f) u) H5) in
532 (let H7 \def (eq_ind_r C c2 (\lambda (c0: C).(wf3 g c1 c0)) H1 (CHead c1
533 (Flat f) u) H5) in (let H_x \def (wf3_gen_head2 g c1 c1 u (Flat f) H7) in
534 (let H8 \def H_x in (ex_ind B (\lambda (b: B).(eq K (Flat f) (Bind b))) (ty3
535 g (CSort (cbk c1)) (app1 c1 (THead (Flat f) u t1)) (app1 c1 (THead (Flat f) u
536 t2))) (\lambda (x: B).(\lambda (H9: (eq K (Flat f) (Bind x))).(let H10 \def
537 (eq_ind K (Flat f) (\lambda (ee: K).(match ee in K return (\lambda (_:
538 K).Prop) with [(Bind _) \Rightarrow False | (Flat _) \Rightarrow True])) I
539 (Bind x) H9) in (False_ind (ty3 g (CSort (cbk c1)) (app1 c1 (THead (Flat f) u
540 t1)) (app1 c1 (THead (Flat f) u t2))) H10)))) H8)))))))))))))))) y c H0)))