1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 set "baseuri" "cic:/matita/tests/simpl/".
16 include "legacy/coq.ma".
18 alias symbol "eq" (instance 0) = "Coq's leibnitz's equality".
19 alias id "plus" = "cic:/Coq/Init/Peano/plus.con".
20 alias id "S" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/2)".
21 alias id "O" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1/1)".
22 alias id "not" = "cic:/Coq/Init/Logic/not.con".
23 alias id "nat" = "cic:/Coq/Init/Datatypes/nat.ind#xpointer(1/1)".
24 alias id "plus_comm" = "cic:/Coq/Arith/Plus/plus_comm.con".
29 not (x = y) \to not(y = x).
31 unfold not. (* simplify. *)
37 theorem t: let f \def \lambda x,y. x y in f (\lambda x.S x) O = S O.
38 intros. simplify. change in \vdash (? ? (? %) ?) with O.
42 theorem X: \forall x:nat. let myplus \def plus x in myplus (S O) = S x.
43 intros. simplify. change in \vdash (? ? (% ?) ?) with (plus x).
45 rewrite > plus_comm. reflexivity. qed.
47 theorem R: \forall x:nat. let uno \def x + O in S O + uno = 1 + x.
49 change in \vdash (? ? (? %) ?) with (x + O).
50 rewrite > plus_comm. reflexivity. qed.