2 ||M|| This file is part of HELM, an Hypertextual, Electronic
3 ||A|| Library of Mathematics, developed at the Computer Science
4 ||T|| Department of the University of Bologna, Italy.
7 ||A|| This file is distributed under the terms of the
8 \ / GNU General Public License Version 2
10 V_______________________________________________________________ *)
12 include "arithmetics/sigma_pi.ma".
13 include "arithmetics/primes.ma".
15 (* binomial coefficient *)
16 definition bc ≝ λn,k. n!/(k!*(n-k)!).
18 lemma bceq :∀n,k. bc n k = n!/(k!*(n-k)!).
21 theorem bc_n_n: ∀n. bc n n = 1.
22 #n >bceq <minus_n_n <times_n_1 @div_n_n //
25 theorem bc_n_O: ∀n. bc n O = 1.
26 #n >bceq <minus_n_O /2/
29 theorem fact_minus: ∀n,k. k < n →
30 (n - S k)!*(n-k) = (n - k)!.
33 |#l #ltl >(minus_Sn_m k) [// |@le_S_S_to_le //]
38 ∀k. k ≤n → k!*(n-k)! ∣ n!.
40 [#k #lek0 <(le_n_O_to_eq ? lek0) //
41 |#m #Hind #k (cases k) normalize //
42 #c #lec cases (le_to_or_lt_eq … (le_S_S_to_le …lec))
44 cut (m-(m-(S c)) = S c) [@plus_to_minus @plus_minus_m_m //] #eqSc
45 lapply (Hind c (le_S_S_to_le … lec)) #Hc
46 lapply (Hind (m - (S c)) ?) [@le_plus_to_minus //] >eqSc #Hmc
47 >(plus_minus_m_m m c) in ⊢ (??(??(?%))) [|@le_S_S_to_le //]
48 >commutative_plus >(distributive_times_plus ? (S c))
50 [>associative_times >(commutative_times (S c))
51 <associative_times @divides_times //
52 |<(fact_minus …ltcm) in ⊢ (?(??%)?)
53 <associative_times @divides_times //
54 >commutative_times @Hmc
56 |#eqcm >eqcm <minus_n_n <times_n_1 //
61 theorem bc1: ∀n.∀k. k < n →
62 bc (S n) (S k) = (bc n k) + (bc n (S k)).
63 #n #k #ltkn > bceq >(bceq n) >(bceq n (S k))
64 >(div_times_times ?? (S k)) in ⊢ (???(?%?))
65 [|>(times_n_O 0) @lt_times // | //]
66 >associative_times in ⊢ (???(?(??%)?))
67 >commutative_times in ⊢ (???(?(??(??%))?))
68 <associative_times in ⊢ (???(?(??%)?))
69 >(div_times_times ?? (n - k)) in ⊢ (???(??%))
70 [|>(times_n_O 0) @lt_times //
71 |@(le_plus_to_le_r k ??) <plus_minus_m_m /2/]
72 >associative_times in ⊢ (???(??(??%)))
73 >fact_minus // <plus_div
74 [<distributive_times_plus
75 >commutative_plus in ⊢ (???%) <plus_n_Sm <plus_minus_m_m [|/2/] @refl
76 |<fact_minus // <associative_times @divides_times // @(bc2 n (S k)) //
77 |>associative_times >(commutative_times (S k))
78 <associative_times @divides_times // @bc2 /2/
79 |>(times_n_O 0) @lt_times [@(le_1_fact (S k)) | //]
83 theorem lt_O_bc: ∀n,m. m ≤ n → O < bc n m.
85 [#m #lemO @(le_n_O_elim ? lemO) //
86 |-n #n #Hind #m (cases m) //
87 #m #lemn cases(le_to_or_lt_eq … (le_S_S_to_le …lemn)) //
88 #ltmn >bc1 // >(plus_O_n 0) @lt_plus @Hind /2/
92 theorem binomial_law:∀a,b,n.
93 (a+b)^n = Σ_{k < S n}((bc n k)*(a^(n-k))*(b^k)).
95 -n #n #Hind normalize in ⊢ (? ? % ?).
96 >bigop_Strue // >Hind >distributive_times_plus
97 <(minus_n_n (S n)) <commutative_times <(commutative_times b)
99 >(bigop_distr ???? natDop ? a) >(bigop_distr ???? natDop ? b)
100 >bigop_Strue in ⊢ (??(??%)?) // <associative_plus
101 <commutative_plus in ⊢ (??(? % ?) ?) >associative_plus @eq_f2
102 [<minus_n_n >bc_n_n >bc_n_n normalize //
103 |>bigop_0 >associative_plus >commutative_plus in ⊢ (??(??%)?)
104 <associative_plus >bigop_0 // @eq_f2
105 [>(bigop_op n ??? natACop) @same_bigop //
106 #i #ltin #_ <associative_times >(commutative_times b)
107 >(associative_times ?? b) <(distributive_times_plus_r (b^(S i)))
108 @eq_f2 // <associative_times >(commutative_times a)
109 >associative_times cut(∀n.a*a^n = a^(S n)) [#n @commutative_times] #H
110 >H <minus_Sn_m // <(distributive_times_plus_r (a^(n-i)))
111 @eq_f2 // @sym_eq >commutative_plus @bc1 //
112 |>bc_n_O >bc_n_O normalize //
117 theorem exp_S_sigma_p:∀a,n.
118 (S a)^n = Σ_{k < S n}((bc n k)*a^(n-k)).
119 #a #n cut (S a = a + 1) // #H >H
120 >binomial_law @same_bigop //
124 theorem exp_Sn_SSO: \forall n. exp (S n) 2 = S((exp n 2) + 2*n).
126 rewrite < times_n_SO.
128 rewrite < sym_times.simplify.
129 rewrite < assoc_plus.