]> matita.cs.unibo.it Git - helm.git/blob - weblib/arithmetics/nat.ma
commit by user andrea
[helm.git] / weblib / arithmetics / nat.ma
1 (*
2     ||M||  This file is part of HELM, an Hypertextual, Electronic        
3     ||A||  Library of Mathematics, developed at the Computer Science     
4     ||T||  Department of the University of Bologna, Italy.                     
5     ||I||                                                                 
6     ||T||  
7     ||A||  This file is distributed under the terms of the 
8     \   /  GNU General Public License Version 2        
9      \ /      
10       V_______________________________________________________________ *)
11
12 include "basics/relations.ma".
13
14 inductive nat : Type[0] ≝
15   | O : nat
16   | S : nat → nat.
17   
18 interpretation "Natural numbers" 'N = nat.
19
20 alias num (instance 0) = "natural number".
21
22 definition pred ≝
23  λn. match n with [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 | S p ⇒ p].
24
25 theorem pred_Sn : ∀n.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n).
26 // qed.
27
28 theorem injective_S : \ 5a href="cic:/matita/basics/relations/injective.def(1)"\ 6injective\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6.
29 // qed.
30
31 (*
32 theorem inj_S : \forall n,m:nat.(S n)=(S m) \to n=m.
33 //. qed. *)
34
35 theorem not_eq_S: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
36 /2/ qed.
37
38 definition not_zero: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝
39  λn: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. match n with [ O ⇒ \ 5a href="cic:/matita/basics/logic/False.ind(1,0,0)"\ 6False\ 5/a\ 6 | (S p) ⇒ \ 5a href="cic:/matita/basics/logic/True.ind(1,0,0)"\ 6True\ 5/a\ 6 ].
40
41 theorem not_eq_O_S : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
42 #n @\ 5a href="cic:/matita/basics/logic/Not.con(0,1,1)"\ 6nmk\ 5/a\ 6 #eqOS (change with (\ 5a href="cic:/matita/arithmetics/nat/not_zero.def(1)"\ 6not_zero\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6)) >eqOS // qed.
43
44 theorem not_eq_n_Sn: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
45 #n (elim n) /2/ qed.
46
47 theorem nat_case:
48  ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop. 
49   (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → P \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6) → (∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → P (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) → P n.
50 #n #P (elim n) /2/ qed.
51
52 theorem nat_elim2 :
53  ∀R:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop.
54   (∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 n) 
55   → (∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n) \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6)
56   → (∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R n m → R (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n) (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m))
57   → ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R n m.
58 #R #ROn #RSO #RSS #n (elim n) // #n0 #Rn0m #m (cases m) /2/ qed.
59
60 theorem decidable_eq_nat : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/logic/decidable.def(1)"\ 6decidable\ 5/a\ 6 (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6m).
61 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #n [ (cases n) /2/ | /3/ | #m #Hind (cases Hind) /3/]
62 qed. 
63
64 (*************************** plus ******************************)
65
66 let rec plus n m ≝ 
67  match n with [ O ⇒ m | S p ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (plus p m) ].
68
69 interpretation "natural plus" 'plus x y = (plus x y).
70
71 theorem plus_O_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n.
72 // qed.
73
74 (*
75 theorem plus_Sn_m: ∀n,m:nat. S (n + m) = S n + m.
76 // qed.
77 *)
78
79 theorem plus_n_O: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 60\ 5/a\ 6.
80 #n (elim n) normalize // qed.
81
82 theorem plus_n_Sm : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
83 #n (elim n) normalize // qed.
84
85 (*
86 theorem plus_Sn_m1: ∀n,m:nat. S m + n = n + S m.
87 #n (elim n) normalize // qed.
88 *)
89
90 (* deleterio?
91 theorem plus_n_1 : ∀n:nat. S n = n+1.
92 // qed.
93 *)
94
95 theorem commutative_plus: \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/plus.fix(0,0,1)"\ 6plus\ 5/a\ 6.
96 #n (elim n) normalize // qed. 
97
98 theorem associative_plus : \ 5a href="cic:/matita/basics/relations/associative.def(1)"\ 6associative\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/plus.fix(0,0,1)"\ 6plus\ 5/a\ 6.
99 #n (elim n) normalize // qed.
100
101 theorem assoc_plus1: ∀a,b,c. c \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 (b \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 a) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 a.
102 // qed. 
103
104 theorem injective_plus_r: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/injective.def(1)"\ 6injective\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 (λm.n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m).
105 #n (elim n) normalize /3/ qed.
106
107 (* theorem inj_plus_r: \forall p,n,m:nat. p+n = p+m \to n=m
108 \def injective_plus_r. 
109
110 theorem injective_plus_l: ∀m:nat.injective nat nat (λn.n+m).
111 /2/ qed. *)
112
113 (* theorem inj_plus_l: \forall p,n,m:nat. n+p = m+p \to n=m
114 \def injective_plus_l. *)
115
116 (*************************** times *****************************)
117
118 let rec times n m ≝ 
119  match n with [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 | S p ⇒ m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6(times p m) ].
120
121 interpretation "natural times" 'times x y = (times x y).
122
123 theorem times_Sn_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m.
124 // qed.
125
126 theorem times_O_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6n.
127 // qed.
128
129 theorem times_n_O: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
130 #n (elim n) // qed.
131
132 theorem times_n_Sm : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6(n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6(\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m).
133 #n (elim n) normalize // qed.
134
135 theorem commutative_times : \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6
136 #n (elim n) normalize // qed. 
137
138 (* variant sym_times : \forall n,m:nat. n*m = m*n \def
139 symmetric_times. *)
140
141 theorem distributive_times_plus : \ 5a href="cic:/matita/basics/relations/distributive.def(1)"\ 6distributive\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/plus.fix(0,0,1)"\ 6plus\ 5/a\ 6.
142 #n (elim n) normalize // qed.
143
144 theorem distributive_times_plus_r :
145   ∀a,b,c:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. (b\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6c)\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6a.
146 // qed. 
147
148 theorem associative_times: \ 5a href="cic:/matita/basics/relations/associative.def(1)"\ 6associative\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6.
149 #n (elim n) normalize // qed.
150
151 lemma times_times: ∀x,y,z. x\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6(y\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6z) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 y\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6(x\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6z).
152 // qed. 
153
154 theorem times_n_1 : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 \ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 61\ 5/a\ 6.
155 #n // qed.
156
157 (* ci servono questi risultati? 
158 theorem times_O_to_O: ∀n,m:nat.n*m=O → n=O ∨ m=O.
159 napply nat_elim2 /2/ 
160 #n #m #H normalize #H1 napply False_ind napply not_eq_O_S
161 // qed.
162   
163 theorem times_n_SO : ∀n:nat. n = n * S O.
164 #n // qed.
165
166 theorem times_SSO_n : ∀n:nat. n + n = (S(S O)) * n.
167 normalize // qed.
168
169 nlemma times_SSO: \forall n.(S(S O))*(S n) = S(S((S(S O))*n)).
170 // qed.
171
172 theorem or_eq_eq_S: \forall n.\exists m. 
173 n = (S(S O))*m \lor n = S ((S(S O))*m).
174 #n (elim n)
175   ##[@ /2/
176   ##|#a #H nelim H #b#ornelim or#aeq
177     ##[@ b @ 2 //
178     ##|@ (S b) @ 1 /2/
179     ##]
180 qed.
181 *)
182
183 (******************** ordering relations ************************)
184
185 inductive le (n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6) : \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝
186   | le_n : le n n
187   | le_S : ∀ m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. le n m → le n (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m).
188
189 interpretation "natural 'less or equal to'" 'leq x y = (le x y).
190
191 interpretation "natural 'neither less nor equal to'" 'nleq x y = (Not (le x y)).
192
193 definition lt: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝ λn,m. \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
194
195 interpretation "natural 'less than'" 'lt x y = (lt x y).
196 interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)).
197
198 (* lemma eq_lt: ∀n,m. (n < m) = (S n ≤ m).
199 // qed. *)
200
201 definition ge: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝ λn,m.m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
202
203 interpretation "natural 'greater or equal to'" 'geq x y = (ge x y).
204
205 definition gt: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝ λn,m.m\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6n.
206
207 interpretation "natural 'greater than'" 'gt x y = (gt x y).
208 interpretation "natural 'not greater than'" 'ngtr x y = (Not (gt x y)).
209
210 theorem transitive_le : \ 5a href="cic:/matita/basics/relations/transitive.def(2)"\ 6transitive\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6.
211 #a #b #c #leab #lebc (elim lebc) /2/
212 qed.
213
214 (*
215 theorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p
216 \def transitive_le. *)
217
218 theorem transitive_lt: \ 5a href="cic:/matita/basics/relations/transitive.def(2)"\ 6transitive\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6.
219 #a #b #c #ltab #ltbc (elim ltbc) /2/qed.
220
221 (*
222 theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p
223 \def transitive_lt. *)
224
225 theorem le_S_S: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
226 #n #m #lenm (elim lenm) /2/ qed.
227
228 theorem le_O_n : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
229 #n (elim n) /2/ qed.
230
231 theorem le_n_Sn : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
232 /2/ qed.
233
234 theorem le_pred_n : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
235 #n (elim n) // qed.
236
237 theorem monotonic_pred: \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6.
238 #n #m #lenm (elim lenm) /2/ qed.
239
240 theorem le_S_S_to_le: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
241 (* demo *)
242 /2/ qed.
243
244 (* this are instances of the le versions 
245 theorem lt_S_S_to_lt: ∀n,m. S n < S m → n < m.
246 /2/ qed. 
247
248 theorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m.
249 /2/ qed. *)
250
251 theorem lt_to_not_zero : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/not_zero.def(1)"\ 6not_zero\ 5/a\ 6 m.
252 #n #m #Hlt (elim Hlt) // qed.
253
254 (* lt vs. le *)
255 theorem not_le_Sn_O: ∀ n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
256 #n @\ 5a href="cic:/matita/basics/logic/Not.con(0,1,1)"\ 6nmk\ 5/a\ 6 #Hlen0 @(\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_zero.def(2)"\ 6lt_to_not_zero\ 5/a\ 6 ?? Hlen0) qed.
257
258 theorem not_le_to_not_le_S_S: ∀ n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
259 /3/ qed.
260
261 theorem not_le_S_S_to_not_le: ∀ n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
262 /3/ qed.
263
264 theorem decidable_le: ∀n,m. \ 5a href="cic:/matita/basics/logic/decidable.def(1)"\ 6decidable\ 5/a\ 6 (n\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6m).
265 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #n /2/ #m * /3/ qed.
266
267 theorem decidable_lt: ∀n,m. \ 5a href="cic:/matita/basics/logic/decidable.def(1)"\ 6decidable\ 5/a\ 6 (n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m).
268 #n #m @\ 5a href="cic:/matita/arithmetics/nat/decidable_le.def(6)"\ 6decidable_le\ 5/a\ 6  qed.
269
270 theorem not_le_Sn_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
271 #n (elim n) /2/ qed.
272
273 (* this is le_S_S_to_le
274 theorem lt_S_to_le: ∀n,m:nat. n < S m → n ≤ m.
275 /2/ qed.
276 *)
277
278 lemma le_gen: ∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop.∀n.(∀i. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → P i) → P n.
279 /2/ qed.
280
281 theorem not_le_to_lt: ∀n,m. n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n.
282 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #n
283  [#abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/
284  |/2/
285  |#m #Hind #HnotleSS @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 /3/
286  ]
287 qed.
288
289 theorem lt_to_not_le: ∀n,m. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → m \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
290 #n #m #Hltnm (elim Hltnm) /3/ qed.
291
292 theorem not_lt_to_le: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'not less than'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
293 /4/ qed.
294
295 theorem le_to_not_lt: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'not less than'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
296 #n #m #H @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 /2/ (* /3/ *) qed.
297
298 (* lt and le trans *)
299
300 theorem lt_to_le_to_lt: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p.
301 #n #m #p #H #H1 (elim H1) /2/ qed.
302
303 theorem le_to_lt_to_lt: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p.
304 #n #m #p #H (elim H) /3/ qed.
305
306 theorem lt_S_to_lt: ∀n,m. \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m.
307 /2/ qed.
308
309 theorem ltn_to_ltO: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m.
310 /2/ qed.
311
312 (*
313 theorem lt_SO_n_to_lt_O_pred_n: \forall n:nat.
314 (S O) \lt n \to O \lt (pred n).
315 intros.
316 apply (ltn_to_ltO (pred (S O)) (pred n) ?).
317  apply (lt_pred (S O) n)
318  [ apply (lt_O_S O) 
319  | assumption
320  ]
321 qed. *)
322
323 theorem lt_O_n_elim: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → 
324   ∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop.(∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.P (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) → P n.
325 #n (elim n) // #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/
326 qed.
327
328 theorem S_pred: ∀n. \ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 60\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6(\ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 n) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n.
329 #n #posn (cases posn) //
330 qed.
331
332 (*
333 theorem lt_pred: \forall n,m. 
334   O < n \to n < m \to pred n < pred m. 
335 apply nat_elim2
336   [intros.apply False_ind.apply (not_le_Sn_O ? H)
337   |intros.apply False_ind.apply (not_le_Sn_O ? H1)
338   |intros.simplify.unfold.apply le_S_S_to_le.assumption
339   ]
340 qed.
341
342 theorem le_pred_to_le:
343  ∀n,m. O < m → pred n ≤ pred m → n ≤ m.
344 intros 2
345 elim n
346 [ apply le_O_n
347 | simplify in H2
348   rewrite > (S_pred m)
349   [ apply le_S_S
350     assumption
351   | assumption
352   ]
353 ].
354 qed.
355
356 *)
357
358 (* le to lt or eq *)
359 theorem le_to_or_lt_eq: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m \ 5a title="logical or" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m.
360 #n #m #lenm (elim lenm) /3/ qed.
361
362 (* not eq *)
363 theorem lt_to_not_eq : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
364 #n #m #H @\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 /2/ qed.
365
366 (*not lt 
367 theorem eq_to_not_lt: ∀a,b:nat. a = b → a ≮ b.
368 intros.
369 unfold Not.
370 intros.
371 rewrite > H in H1.
372 apply (lt_to_not_eq b b)
373 [ assumption
374 | reflexivity
375 ]
376 qed. 
377
378 theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n.
379 intros
380 unfold Not
381 intro
382 unfold lt in H
383 unfold lt in H1
384 generalize in match (le_S_S ? ? H)
385 intro
386 generalize in match (transitive_le ? ? ? H2 H1)
387 intro
388 apply (not_le_Sn_n ? H3).
389 qed. *)
390
391 theorem not_eq_to_le_to_lt: ∀n,m. n\ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6m → n\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6m → n\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6m.
392 #n #m #Hneq #Hle cases (\ 5a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(6)"\ 6le_to_or_lt_eq\ 5/a\ 6 ?? Hle) //
393 #Heq /3/ qed.
394 (*
395 nelim (Hneq Heq) qed. *)
396
397 (* le elimination *)
398 theorem le_n_O_to_eq : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6n.
399 #n (cases n) // #a  #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
400
401 theorem le_n_O_elim: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → ∀P: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →Prop. P \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → P n.
402 #n (cases n) // #a #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed. 
403
404 theorem le_n_Sm_elim : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → 
405 ∀P:Prop. (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → P) → (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → P) → P.
406 #n #m #Hle #P (elim Hle) /3/ qed.
407
408 (* le and eq *)
409
410 theorem le_to_le_to_eq: ∀n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m.
411 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 /4/
412 qed. 
413
414 theorem lt_O_S : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
415 /2/ qed.
416
417 (*
418 (* other abstract properties *)
419 theorem antisymmetric_le : antisymmetric nat le.
420 unfold antisymmetric.intros 2.
421 apply (nat_elim2 (\lambda n,m.(n \leq m \to m \leq n \to n=m))).
422 intros.apply le_n_O_to_eq.assumption.
423 intros.apply False_ind.apply (not_le_Sn_O ? H).
424 intros.apply eq_f.apply H.
425 apply le_S_S_to_le.assumption.
426 apply le_S_S_to_le.assumption.
427 qed.
428
429 theorem antisym_le: \forall n,m:nat. n \leq m \to m \leq n \to n=m
430 \def antisymmetric_le.
431
432 theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m.
433 intros
434 unfold lt in H1
435 generalize in match (le_S_S_to_le ? ? H1)
436 intro
437 apply antisym_le
438 assumption.
439 qed.
440 *)
441
442 (* well founded induction principles *)
443
444 theorem nat_elim1 : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop. 
445 (∀m.(∀p. p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → P p) → P m) → P n.
446 #n #P #H 
447 cut (∀q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. q \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → P q) /2/
448 (elim n) 
449  [#q #HleO (* applica male *) 
450     @(\ 5a href="cic:/matita/arithmetics/nat/le_n_O_elim.def(4)"\ 6le_n_O_elim\ 5/a\ 6 ? HleO)
451     @H #p #ltpO @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ (* 3 *)
452  |#p #Hind #q #HleS 
453     @H #a #lta @Hind @\ 5a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"\ 6le_S_S_to_le\ 5/a\ 6 /2/
454  ]
455 qed.
456
457 (* some properties of functions *)
458
459 definition increasing ≝ λf:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. f n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 f (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n).
460
461 theorem increasing_to_monotonic: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
462   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 f.
463 #f #incr #n #m #ltnm (elim ltnm) /2/
464 qed.
465
466 theorem le_n_fn: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6
467   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 f n.
468 #f #incr #n (elim n) /2/
469 qed.
470
471 theorem increasing_to_le: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6
472   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → ∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a title="exists" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6i.m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 f i.
473 #f #incr #m (elim m) /2/#n * #a #lenfa
474 @(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ?? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 a)) /2/
475 qed.
476
477 theorem increasing_to_le2: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → 
478   ∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. f \ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 60\ 5/a\ 6 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a title="exists" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6i. f i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 f (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 i).
479 #f #incr #m #lem (elim lem)
480   [@(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ? ? \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6) /2/
481   |#n #len * #a * #len #ltnr (cases(\ 5a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(6)"\ 6le_to_or_lt_eq\ 5/a\ 6 … ltnr)) #H
482     [@(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ? ? a) % /2/ 
483     |@(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ? ? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 a)) % //
484     ]
485   ]
486 qed.
487
488 theorem increasing_to_injective: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
489   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → \ 5a href="cic:/matita/basics/relations/injective.def(1)"\ 6injective\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 f.
490 #f #incr #n #m cases(\ 5a href="cic:/matita/arithmetics/nat/decidable_le.def(6)"\ 6decidable_le\ 5/a\ 6 n m)
491   [#lenm cases(\ 5a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(6)"\ 6le_to_or_lt_eq\ 5/a\ 6 … lenm) //
492    #lenm #eqf @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6 … eqf) @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_eq.def(7)"\ 6lt_to_not_eq\ 5/a\ 6 
493    @\ 5a href="cic:/matita/arithmetics/nat/increasing_to_monotonic.def(4)"\ 6increasing_to_monotonic\ 5/a\ 6 //
494   |#nlenm #eqf @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6 … eqf) @\ 5a href="cic:/matita/basics/logic/sym_not_eq.def(4)"\ 6sym_not_eq\ 5/a\ 6 
495    @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_eq.def(7)"\ 6lt_to_not_eq\ 5/a\ 6 @\ 5a href="cic:/matita/arithmetics/nat/increasing_to_monotonic.def(4)"\ 6increasing_to_monotonic\ 5/a\ 6 /2/
496   ]
497 qed.
498
499 (*********************** monotonicity ***************************)
500 theorem monotonic_le_plus_r: 
501 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 (λm.n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m).
502 #n #a #b (elim n) normalize //
503 #m #H #leab @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 /2/ qed.
504
505 (*
506 theorem le_plus_r: ∀p,n,m:nat. n ≤ m → p + n ≤ p + m
507 ≝ monotonic_le_plus_r. *)
508
509 theorem monotonic_le_plus_l: 
510 ∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 (λn.n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m).
511 /2/ qed.
512
513 (*
514 theorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p
515 \def monotonic_le_plus_l. *)
516
517 theorem le_plus: ∀n1,n2,m1,m2:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2  → m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m2 
518 → n1 \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2 \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m2.
519 #n1 #n2 #m1 #m2 #len #lem @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (n1\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m2))
520 /2/ qed.
521
522 theorem le_plus_n :∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m.
523 /2/ qed. 
524
525 lemma le_plus_a: ∀a,n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m.
526 /2/ qed.
527
528 lemma le_plus_b: ∀b,n,m. n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
529 /2/ qed.
530
531 theorem le_plus_n_r :∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 n.
532 /2/ qed.
533
534 theorem eq_plus_to_le: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
535 // qed.
536
537 theorem le_plus_to_le: ∀a,n,m. a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
538 #a (elim a) normalize /3/ qed. 
539
540 theorem le_plus_to_le_r: ∀a,n,m. n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 a \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6a → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
541 /2/ qed. 
542
543 (* plus &amp; lt *)
544
545 theorem monotonic_lt_plus_r: 
546 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λm.n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m).
547 /2/ qed.
548
549 (*
550 variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def
551 monotonic_lt_plus_r. *)
552
553 theorem monotonic_lt_plus_l: 
554 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λm.m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n).
555 /2/ qed.
556
557 (*
558 variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def
559 monotonic_lt_plus_l. *)
560
561 theorem lt_plus: ∀n,m,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q → n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 q.
562 #n #m #p #q #ltnm #ltpq
563 @(\ 5a href="cic:/matita/arithmetics/nat/transitive_lt.def(3)"\ 6transitive_lt\ 5/a\ 6 ? (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6q))/2/ qed.
564
565 theorem lt_plus_to_lt_l :∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n → p\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6q.
566 /2/ qed.
567
568 theorem lt_plus_to_lt_r :∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6q → p\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6q.
569 /2/ qed.
570
571 (*
572 theorem le_to_lt_to_lt_plus: ∀a,b,c,d:nat.
573 a ≤ c → b < d → a + b < c+d.
574 (* bello /2/ un po' lento *)
575 #a #b #c #d #leac #lebd 
576 normalize napplyS le_plus // qed.
577 *)
578
579 (* times *)
580 theorem monotonic_le_times_r: 
581 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 (λm. n \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 m).
582 #n #x #y #lexy (elim n) normalize//(* lento /2/*)
583 #a #lea @\ 5a href="cic:/matita/arithmetics/nat/le_plus.def(7)"\ 6le_plus\ 5/a\ 6 //
584 qed.
585
586 (*
587 theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m
588 \def monotonic_le_times_r. *)
589
590 (*
591 theorem monotonic_le_times_l: 
592 ∀m:nat.monotonic nat le (λn.n*m).
593 /2/ qed.
594 *)
595
596 (*
597 theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p
598 \def monotonic_le_times_l. *)
599
600 theorem le_times: ∀n1,n2,m1,m2:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6
601 n1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2  → m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m2 → n1\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m2.
602 #n1 #n2 #m1 #m2 #len #lem @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (n1\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m2)) /2/
603 qed.
604
605 (* interessante *)
606 theorem lt_times_n: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m.
607 #n #m #H /2/ qed.
608
609 theorem le_times_to_le: 
610 ∀a,n,m. \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 a → a \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 a \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
611 #a @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 normalize
612   [//
613   |#n #H1 #H2 
614      @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (a\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n)) /2/
615   |#n #m #H #lta #le
616      @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 @H /2/
617   ]
618 qed.
619
620 (*
621 theorem le_S_times_2: ∀n,m.O < m → n ≤ m → S n ≤ 2*m.
622 #n #m #posm #lenm  (* interessante *)
623 applyS (le_plus n m) // qed. *)
624
625 (* times &amp; lt *)
626 (*
627 theorem lt_O_times_S_S: ∀n,m:nat.O < (S n)*(S m).
628 intros.simplify.unfold lt.apply le_S_S.apply le_O_n.
629 qed. *)
630
631 (*
632 theorem lt_times_eq_O: \forall a,b:nat.
633 O < a → a * b = O → b = O.
634 intros.
635 apply (nat_case1 b)
636 [ intros.
637   reflexivity
638 | intros.
639   rewrite > H2 in H1.
640   rewrite > (S_pred a) in H1
641   [ apply False_ind.
642     apply (eq_to_not_lt O ((S (pred a))*(S m)))
643     [ apply sym_eq.
644       assumption
645     | apply lt_O_times_S_S
646     ]
647   | assumption
648   ]
649 ]
650 qed. 
651
652 theorem O_lt_times_to_O_lt: \forall a,c:nat.
653 O \lt (a * c) \to O \lt a.
654 intros.
655 apply (nat_case1 a)
656 [ intros.
657   rewrite > H1 in H.
658   simplify in H.
659   assumption
660 | intros.
661   apply lt_O_S
662 ]
663 qed.
664
665 lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m.
666 intros.
667 elim (le_to_or_lt_eq O ? (le_O_n m))
668   [assumption
669   |apply False_ind.
670    rewrite < H1 in H.
671    rewrite < times_n_O in H.
672    apply (not_le_Sn_O ? H)
673   ]
674 qed. *)
675
676 (*
677 theorem monotonic_lt_times_r: 
678 ∀n:nat.monotonic nat lt (λm.(S n)*m).
679 /2/ 
680 simplify.
681 intros.elim n.
682 simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption.
683 apply lt_plus.assumption.assumption.
684 qed. *)
685
686 theorem monotonic_lt_times_r: 
687   ∀c:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λt.(c\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6t)).
688 #c #posc #n #m #ltnm
689 (elim ltnm) normalize
690   [/2/ 
691   |#a #_ #lt1 @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 … lt1) //
692   ]
693 qed.
694
695 theorem monotonic_lt_times_l: 
696   ∀c:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λt.(t\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6c)).
697 /2/
698 qed.
699
700 theorem lt_to_le_to_lt_times: 
701 ∀n,m,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → p \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 q → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q → n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q.
702 #n #m #p #q #ltnm #lepq #posq
703 @(\ 5a href="cic:/matita/arithmetics/nat/le_to_lt_to_lt.def(5)"\ 6le_to_lt_to_lt\ 5/a\ 6 ? (n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q))
704   [@\ 5a href="cic:/matita/arithmetics/nat/monotonic_le_times_r.def(8)"\ 6monotonic_le_times_r\ 5/a\ 6 //
705   |@\ 5a href="cic:/matita/arithmetics/nat/monotonic_lt_times_l.def(10)"\ 6monotonic_lt_times_l\ 5/a\ 6 //
706   ]
707 qed.
708
709 theorem lt_times:∀n,m,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6m → p\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6q → n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q.
710 #n #m #p #q #ltnm #ltpq @\ 5a href="cic:/matita/arithmetics/nat/lt_to_le_to_lt_times.def(11)"\ 6lt_to_le_to_lt_times\ 5/a\ 6\ 5span style="text-decoration: underline;"\ 6 \ 5/span\ 6/2/
711 qed.
712
713 theorem lt_times_n_to_lt_l: 
714 ∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. p\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6n → p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q.
715 #n #p #q #Hlt (elim (\ 5a href="cic:/matita/arithmetics/nat/decidable_lt.def(7)"\ 6decidable_lt\ 5/a\ 6 p q)) //
716 #nltpq @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6 ? ? (\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 ? ? Hlt))
717 applyS \ 5a href="cic:/matita/arithmetics/nat/monotonic_le_times_r.def(8)"\ 6monotonic_le_times_r\ 5/a\ 6 /2/
718 qed.
719
720 theorem lt_times_n_to_lt_r: 
721 ∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q → p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q.
722 /2/ qed.
723
724 (*
725 theorem nat_compare_times_l : \forall n,p,q:nat. 
726 nat_compare p q = nat_compare ((S n) * p) ((S n) * q).
727 intros.apply nat_compare_elim.intro.
728 apply nat_compare_elim.
729 intro.reflexivity.
730 intro.absurd (p=q).
731 apply (inj_times_r n).assumption.
732 apply lt_to_not_eq. assumption.
733 intro.absurd (q<p).
734 apply (lt_times_to_lt_r n).assumption.
735 apply le_to_not_lt.apply lt_to_le.assumption.
736 intro.rewrite < H.rewrite > nat_compare_n_n.reflexivity.
737 intro.apply nat_compare_elim.intro.
738 absurd (p<q).
739 apply (lt_times_to_lt_r n).assumption.
740 apply le_to_not_lt.apply lt_to_le.assumption.
741 intro.absurd (q=p).
742 symmetry.
743 apply (inj_times_r n).assumption.
744 apply lt_to_not_eq.assumption.
745 intro.reflexivity.
746 qed. *)
747
748 (* times and plus 
749 theorem lt_times_plus_times: \forall a,b,n,m:nat. 
750 a < n \to b < m \to a*m + b < n*m.
751 intros 3.
752 apply (nat_case n)
753   [intros.apply False_ind.apply (not_le_Sn_O ? H)
754   |intros.simplify.
755    rewrite < sym_plus.
756    unfold.
757    change with (S b+a*m1 \leq m1+m*m1).
758    apply le_plus
759     [assumption
760     |apply le_times
761       [apply le_S_S_to_le.assumption
762       |apply le_n
763       ]
764     ]
765   ]
766 qed. *)
767
768 (************************** minus ******************************)
769
770 let rec minus n m ≝ 
771  match n with 
772  [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6
773  | S p ⇒ 
774         match m with
775           [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 p
776     | S q ⇒ minus p q ]].
777         
778 interpretation "natural minus" 'minus x y = (minus x y).
779
780 theorem minus_S_S: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m.
781 // qed.
782
783 theorem minus_O_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
784 #n (cases n) // qed.
785
786 theorem minus_n_O: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
787 #n (cases n) // qed.
788
789 theorem minus_n_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
790 #n (elim n) // qed.
791
792 theorem minus_Sn_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n)\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
793 #n (elim n) normalize // qed.
794
795 theorem minus_Sn_m: ∀m,n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m).
796 (* qualcosa da capire qui 
797 #n #m #lenm nelim lenm napplyS refl_eq. *)
798 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 
799   [//
800   |#n #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ 
801   |#n #m #Hind #c applyS Hind /2/
802   ]
803 qed.
804
805 (*
806 theorem not_eq_to_le_to_le_minus: 
807   ∀n,m.n ≠ m → n ≤ m → n ≤ m - 1.
808 #n * #m (cases m// #m normalize
809 #H #H1 napply le_S_S_to_le
810 napplyS (not_eq_to_le_to_lt n (S m) H H1)
811 qed. *)
812
813 theorem eq_minus_S_pred: ∀n,m. n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6(n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m).
814 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 normalize //
815 qed.
816
817 theorem plus_minus:
818 ∀m,n,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p)\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m.
819 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 
820   [//
821   |#n #p #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/
822   |normalize/3/
823   ]
824 qed.
825
826 theorem minus_plus_m_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m)\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m.
827 /2/ qed.
828
829 theorem plus_minus_m_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
830   m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m.
831 #n #m #lemn @\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 /2/ qed.
832
833 theorem le_plus_minus_m_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m.
834 #n (elim n) // #a #Hind #m (cases m) // normalize #n/2/  
835 qed.
836
837 theorem minus_to_plus :∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
838   m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 p → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p.
839 #n #m #p #lemn #eqp (applyS \ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6) //
840 qed.
841
842 theorem plus_to_minus :∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 p.
843 #n #m #p #eqp @\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 (applyS (\ 5a href="cic:/matita/arithmetics/nat/minus_plus_m_m.def(6)"\ 6minus_plus_m_m\ 5/a\ 6 p m))
844 qed.
845
846 theorem minus_pred_pred : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → 
847 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 m.
848 #n #m #posn #posm @(\ 5a href="cic:/matita/arithmetics/nat/lt_O_n_elim.def(7)"\ 6lt_O_n_elim\ 5/a\ 6 n posn) @(\ 5a href="cic:/matita/arithmetics/nat/lt_O_n_elim.def(7)"\ 6lt_O_n_elim\ 5/a\ 6 m posm) //.
849 qed.
850
851
852 (*
853
854 theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n.
855 intros.elim H.elim (minus_Sn_n n).apply le_n.
856 rewrite > minus_Sn_m.
857 apply le_S.assumption.
858 apply lt_to_le.assumption.
859 qed.
860
861 theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)).
862 intros.
863 apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))).
864 intro.elim n1.simplify.apply le_n_Sn.
865 simplify.rewrite < minus_n_O.apply le_n.
866 intros.simplify.apply le_n_Sn.
867 intros.simplify.apply H.
868 qed.
869
870 theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. 
871 intros 3.intro.
872 (* autobatch *)
873 (* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *)
874 apply (trans_le (m-n) (S (m-(S n))) p).
875 apply minus_le_S_minus_S.
876 assumption.
877 qed.
878
879 theorem le_minus_m: \forall n,m:nat. n-m \leq n.
880 intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)).
881 intros.rewrite < minus_n_O.apply le_n.
882 intros.simplify.apply le_n.
883 intros.simplify.apply le_S.assumption.
884 qed.
885
886 theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n.
887 intros.apply (lt_O_n_elim n H).intro.
888 apply (lt_O_n_elim m H1).intro.
889 simplify.unfold lt.apply le_S_S.apply le_minus_m.
890 qed.
891
892 theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m.
893 intros 2.
894 apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)).
895 intros.apply le_O_n.
896 simplify.intros. assumption.
897 simplify.intros.apply le_S_S.apply H.assumption.
898 qed.
899 *)
900
901 (* monotonicity and galois *)
902
903 theorem monotonic_le_minus_l: 
904 ∀p,q,n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. q \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → q\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
905 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #p #q
906   [#lePO @(\ 5a href="cic:/matita/arithmetics/nat/le_n_O_elim.def(4)"\ 6le_n_O_elim\ 5/a\ 6 ? lePO) //
907   |//
908   |#Hind #n (cases n) // #a #leSS @Hind /2/
909   ]
910 qed.
911
912 theorem le_minus_to_plus: ∀n,m,p. n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → n\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m.
913 #n #m #p #lep @\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6
914   [|@\ 5a href="cic:/matita/arithmetics/nat/le_plus_minus_m_m.def(8)"\ 6le_plus_minus_m_m\ 5/a\ 6 | @\ 5a href="cic:/matita/arithmetics/nat/monotonic_le_plus_l.def(6)"\ 6monotonic_le_plus_l\ 5/a\ 6 // ]
915 qed.
916
917 theorem le_minus_to_plus_r: ∀a,b,c. c \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 b → a \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 b \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 c → a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 b.
918 #a #b #c #Hlecb #H >(\ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6 … Hlecb) /2/
919 qed.
920
921 theorem le_plus_to_minus: ∀n,m,p. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p.
922 #n #m #p #lep /2/ qed.
923
924 theorem le_plus_to_minus_r: ∀a,b,c. a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 c → a \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 c \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6b.
925 #a #b #c #H @(\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_le_r.def(6)"\ 6le_plus_to_le_r\ 5/a\ 6 … b) /2/
926 qed.
927
928 theorem lt_minus_to_plus: ∀a,b,c. a \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 b \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → a \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b.
929 #a #b #c #H @\ 5a href="cic:/matita/arithmetics/nat/not_le_to_lt.def(5)"\ 6not_le_to_lt\ 5/a\ 6 
930 @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 …H)) /2/
931 qed.
932
933 theorem lt_minus_to_plus_r: ∀a,b,c. a \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 b \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 c → a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 b.
934 #a #b #c #H @\ 5a href="cic:/matita/arithmetics/nat/not_le_to_lt.def(5)"\ 6not_le_to_lt\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus.def(9)"\ 6le_plus_to_minus\ 5/a\ 6 …))
935 @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 //
936 qed.
937
938 theorem lt_plus_to_minus: ∀n,m,p. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p.
939 #n #m #p #lenm #H normalize <\ 5a href="cic:/matita/arithmetics/nat/minus_Sn_m.def(5)"\ 6minus_Sn_m\ 5/a\ 6 // @\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus.def(9)"\ 6le_plus_to_minus\ 5/a\ 6 //
940 qed.
941
942 theorem lt_plus_to_minus_r: ∀a,b,c. a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → a \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 b.
943 #a #b #c #H @\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus_r.def(9)"\ 6le_plus_to_minus_r\ 5/a\ 6 //
944 qed. 
945
946 theorem monotonic_le_minus_r: 
947 ∀p,q,n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. q \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6q.
948 #p #q #n #lepq @\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus.def(9)"\ 6le_plus_to_minus\ 5/a\ 6
949 @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/le_plus_minus_m_m.def(8)"\ 6le_plus_minus_m_m\ 5/a\ 6 ? q)) /2/
950 qed.
951
952 theorem eq_minus_O: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
953   n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
954 #n #m #lenm @(\ 5a href="cic:/matita/arithmetics/nat/le_n_O_elim.def(4)"\ 6le_n_O_elim\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)) /2/
955 qed.
956
957 theorem distributive_times_minus: \ 5a href="cic:/matita/basics/relations/distributive.def(1)"\ 6distributive\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/minus.fix(0,0,1)"\ 6minus\ 5/a\ 6.
958 #a #b #c
959 (cases (\ 5a href="cic:/matita/arithmetics/nat/decidable_lt.def(7)"\ 6decidable_lt\ 5/a\ 6 b c)) #Hbc
960  [> \ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(11)"\ 6eq_minus_O\ 5/a\ 6 /2/ >\ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(11)"\ 6eq_minus_O\ 5/a\ 6 // 
961   @\ 5a href="cic:/matita/arithmetics/nat/monotonic_le_times_r.def(8)"\ 6monotonic_le_times_r\ 5/a\ 6 /2/
962  |@\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 (applyS \ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6) <\ 5a href="cic:/matita/arithmetics/nat/distributive_times_plus.def(7)"\ 6distributive_times_plus\ 5/a\ 6 
963   @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 (applyS \ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6) /2/
964 qed.
965
966 theorem minus_plus: ∀n,m,p. n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6(m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p).
967 #n #m #p 
968 cases (\ 5a href="cic:/matita/arithmetics/nat/decidable_le.def(6)"\ 6decidable_le\ 5/a\ 6 (m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p) n) #Hlt
969   [@\ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6 @\ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/associative_plus.def(4)"\ 6associative_plus\ 5/a\ 6
970    @\ 5a href="cic:/matita/arithmetics/nat/minus_to_plus.def(8)"\ 6minus_to_plus\ 5/a\ 6 //
971   |cut (n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p) [@(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/le_n_Sn.def(1)"\ 6le_n_Sn\ 5/a\ 6 …)) @\ 5a href="cic:/matita/arithmetics/nat/not_le_to_lt.def(5)"\ 6not_le_to_lt\ 5/a\ 6 //]
972    #H >\ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(11)"\ 6eq_minus_O\ 5/a\ 6 /2/ >\ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(11)"\ 6eq_minus_O\ 5/a\ 6 // 
973   ]
974 qed.
975
976 (*
977 theorem plus_minus: ∀n,m,p. p ≤ m → (n+m)-p = n +(m-p).
978 #n #m #p #lepm @plus_to_minus >(commutative_plus p)
979 >associative_plus <plus_minus_m_m //
980 qed.  *)
981
982 theorem minus_minus: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. p \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n →
983   p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6(n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6(m\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6p).
984 #n #m #p #lepm #lemn
985 @\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 @\ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/associative_plus.def(4)"\ 6associative_plus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6 //
986 <\ 5a href="cic:/matita/arithmetics/nat/commutative_plus.def(5)"\ 6commutative_plus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6 //
987 qed.
988
989 (*********************** boolean arithmetics ********************) 
990 include "basics/bool.ma".
991
992 let rec eqb n m ≝ 
993 match n with 
994   [ O ⇒ match m with [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 | S q ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6
995   | S p ⇒ match m with [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 | S q ⇒ eqb p q]
996   ].
997
998 theorem eqb_elim : ∀ n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.∀ P:\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6 → Prop.
999 (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6m → (P \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6)) → (n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → (P \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6)) → (P (\ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m)). 
1000 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 
1001   [#n (cases n) normalize /3/ 
1002   |normalize /3/
1003   |normalize /4/ 
1004   ] 
1005 qed.
1006
1007 theorem eqb_n_n: ∀n. \ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
1008 #n (elim n) normalize // qed. 
1009
1010 theorem eqb_true_to_eq: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m.
1011 #n #m @(\ 5a href="cic:/matita/arithmetics/nat/eqb_elim.def(5)"\ 6eqb_elim\ 5/a\ 6 n m) // #_ #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1012
1013 theorem eqb_false_to_not_eq: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 → n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1014 #n #m @(\ 5a href="cic:/matita/arithmetics/nat/eqb_elim.def(5)"\ 6eqb_elim\ 5/a\ 6 n m) /2/ qed.
1015
1016 theorem eq_to_eqb_true: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
1017 // qed.
1018
1019 theorem not_eq_to_eqb_false: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
1020   n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6  m → \ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6.
1021 #n #m #noteq @\ 5a href="cic:/matita/arithmetics/nat/eqb_elim.def(5)"\ 6eqb_elim\ 5/a\ 6// #Heq @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1022
1023 let rec leb n m ≝ 
1024 match n with 
1025     [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6
1026     | (S p) ⇒
1027         match m with 
1028         [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6
1029               | (S q) ⇒ leb p q]].
1030
1031 theorem leb_elim: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. ∀P:\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6 → Prop. 
1032 (n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → P \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6) → (n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → P \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6) → P (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m).
1033 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 normalize
1034   [/2/
1035   |/3/
1036   |#n #m #Hind #P #Pt #Pf @Hind
1037     [#lenm @Pt @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 // |#nlenm @Pf /2/ ]
1038   ]
1039 qed.
1040
1041 theorem leb_true_to_le:∀n,m.\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1042 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #_ #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1043
1044 theorem leb_false_to_not_le:∀n,m.
1045   \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 → n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1046 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #_ #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1047
1048 theorem le_to_leb_true: ∀n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
1049 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #H #H1 @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1050
1051 theorem not_le_to_leb_false: ∀n,m. n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6.
1052 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #H #H1 @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1053
1054 theorem lt_to_leb_false: ∀n,m. m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6.
1055 /3/ qed.
1056
1057 (* serve anche ltb? 
1058 ndefinition ltb ≝λn,m. leb (S n) m.
1059
1060 theorem ltb_elim: ∀n,m:nat. ∀P:bool → Prop. 
1061 (n < m → P true) → (n ≮ m → P false) → P (ltb n m).
1062 #n #m #P #Hlt #Hnlt
1063 napply leb_elim /3/ qed.
1064
1065 theorem ltb_true_to_lt:∀n,m.ltb n m = true → n < m.
1066 #n #m #Hltb napply leb_true_to_le nassumption
1067 qed.
1068
1069 theorem ltb_false_to_not_lt:∀n,m.
1070   ltb n m = false → n ≮ m.
1071 #n #m #Hltb napply leb_false_to_not_le nassumption
1072 qed.
1073
1074 theorem lt_to_ltb_true: ∀n,m. n < m → ltb n m = true.
1075 #n #m #Hltb napply le_to_leb_true nassumption
1076 qed.
1077
1078 theorem le_to_ltb_false: ∀n,m. m \le n → ltb n m = false.
1079 #n #m #Hltb napply lt_to_leb_false /2/
1080 qed. *)
1081
1082 (* min e max *)
1083 definition min: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 ≝
1084 λn.λm. \ 5a href="cic:/matita/basics/bool/if_then_else.def(1)"\ 6if_then_else\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m) n m.
1085
1086 definition max: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 ≝
1087 λn.λm. \ 5a href="cic:/matita/basics/bool/if_then_else.def(1)"\ 6if_then_else\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m) m n.
1088
1089 lemma commutative_min: \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6.
1090 #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 
1091   [@\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/
1092   |#notle >(\ 5a href="cic:/matita/arithmetics/nat/le_to_leb_true.def(7)"\ 6le_to_leb_true\ 5/a\ 6 …) // @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) /2/
1093   ] qed.
1094
1095 lemma le_minr: ∀i,n,m. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6 n m → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1096 #i #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/ qed. 
1097
1098 lemma le_minl: ∀i,n,m. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6 n m → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
1099 /2/ qed.
1100
1101 lemma to_min: ∀i,n,m. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6 n m.
1102 #i #n #m #lein #leim normalize (cases (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m)) 
1103 normalize // qed.
1104
1105 lemma commutative_max: \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6.
1106 #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 
1107   [@\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/
1108   |#notle >(\ 5a href="cic:/matita/arithmetics/nat/le_to_leb_true.def(7)"\ 6le_to_leb_true\ 5/a\ 6 …) // @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) /2/
1109   ] qed.
1110
1111 lemma le_maxl: ∀i,n,m. \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6 n m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i.
1112 #i #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/ qed. 
1113
1114 lemma le_maxr: ∀i,n,m. \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6 n m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i.
1115 /2/ qed.
1116
1117 lemma to_max: ∀i,n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6 n m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i.
1118 #i #n #m #leni #lemi normalize (cases (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m)) 
1119 normalize // qed.