]> matita.cs.unibo.it Git - helm.git/blob - weblib/flagtest/prova.ma
while machine
[helm.git] / weblib / flagtest / prova.ma
1 <<<<<<< .mine
2 (* scriptino *)=======
3 (*
4     ||M||  This file is part of HELM, an Hypertextual, Electronic        
5     ||A||  Library of Mathematics, developed at the Computer Science     
6     ||T||  Department of the University of Bologna, Italy.                     
7     ||I||                                                                 
8     ||T||  
9     ||A||  This file is distributed under the terms of the 
10     \   /  GNU General Public License Version 2        
11      \ /      
12       V_______________________________________________________________ *)
13
14 include "basics/relations.ma".
15
16 inductive nat : Type[0] ≝
17   | O : nat
18   | S : nat → nat.
19   
20 interpretation "Natural numbers" 'N = nat.
21
22 alias num (instance 0) = "natural number".
23
24 definition pred ≝
25  λn. match n with [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 | S p ⇒ p].
26
27 theorem pred_Sn : ∀n.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n).
28 // qed.
29
30 theorem injective_S : \ 5a href="cic:/matita/basics/relations/injective.def(1)"\ 6injective\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6.
31 // qed.
32
33 (*
34 theorem inj_S : \forall n,m:nat.(S n)=(S m) \to n=m.
35 //. qed. *)
36
37 theorem not_eq_S: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
38 /2/ qed.
39
40 definition not_zero: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝
41  λn: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. match n with [ O ⇒ \ 5a href="cic:/matita/basics/logic/False.ind(1,0,0)"\ 6False\ 5/a\ 6 | (S p) ⇒ \ 5a href="cic:/matita/basics/logic/True.ind(1,0,0)"\ 6True\ 5/a\ 6 ].
42
43 theorem not_eq_O_S : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
44 #n @\ 5a href="cic:/matita/basics/logic/Not.con(0,1,1)"\ 6nmk\ 5/a\ 6 #eqOS (change with (\ 5a href="cic:/matita/arithmetics/nat/not_zero.def(1)"\ 6not_zero\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6)) >eqOS // qed.
45
46 theorem not_eq_n_Sn: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
47 #n (elim n) /2/ qed.
48
49 theorem nat_case:
50  ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop. 
51   (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → P \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6) → (∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → P (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) → P n.
52 #n #P (elim n) /2/ qed.
53
54 theorem nat_elim2 :
55  ∀R:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop.
56   (∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 n) 
57   → (∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n) \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6)
58   → (∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R n m → R (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n) (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m))
59   → ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. R n m.
60 #R #ROn #RSO #RSS #n (elim n) // #n0 #Rn0m #m (cases m) /2/ qed.
61
62 theorem decidable_eq_nat : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/logic/decidable.def(1)"\ 6decidable\ 5/a\ 6 (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6m).
63 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #n [ (cases n) /2/ | /3/ | #m #Hind (cases Hind) /3/]
64 qed. 
65
66 (*************************** plus ******************************)
67
68 let rec plus n m ≝ 
69  match n with [ O ⇒ m | S p ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (plus p m) ].
70
71 interpretation "natural plus" 'plus x y = (plus x y).
72
73 theorem plus_O_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n.
74 // qed.
75
76 (*
77 theorem plus_Sn_m: ∀n,m:nat. S (n + m) = S n + m.
78 // qed.
79 *)
80
81 theorem plus_n_O: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 60\ 5/a\ 6.
82 #n (elim n) normalize // qed.
83
84 theorem plus_n_Sm : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
85 #n (elim n) normalize // qed.
86
87 (*
88 theorem plus_Sn_m1: ∀n,m:nat. S m + n = n + S m.
89 #n (elim n) normalize // qed.
90 *)
91
92 (* deleterio?
93 theorem plus_n_1 : ∀n:nat. S n = n+1.
94 // qed.
95 *)
96
97 theorem commutative_plus: \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/plus.fix(0,0,1)"\ 6plus\ 5/a\ 6.
98 #n (elim n) normalize // qed. 
99
100 theorem associative_plus : \ 5a href="cic:/matita/basics/relations/associative.def(1)"\ 6associative\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/plus.fix(0,0,1)"\ 6plus\ 5/a\ 6.
101 #n (elim n) normalize // qed.
102
103 theorem assoc_plus1: ∀a,b,c. c \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 (b \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 a) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 a.
104 // qed. 
105
106 theorem injective_plus_r: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/injective.def(1)"\ 6injective\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 (λm.n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m).
107 #n (elim n) normalize /3/ qed.
108
109 (* theorem inj_plus_r: \forall p,n,m:nat. p+n = p+m \to n=m
110 \def injective_plus_r. 
111
112 theorem injective_plus_l: ∀m:nat.injective nat nat (λn.n+m).
113 /2/ qed. *)
114
115 (* theorem inj_plus_l: \forall p,n,m:nat. n+p = m+p \to n=m
116 \def injective_plus_l. *)
117
118 (*************************** times *****************************)
119
120 let rec times n m ≝ 
121  match n with [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 | S p ⇒ m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6(times p m) ].
122
123 interpretation "natural times" 'times x y = (times x y).
124
125 theorem times_Sn_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m.
126 // qed.
127
128 theorem times_O_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6n.
129 // qed.
130
131 theorem times_n_O: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
132 #n (elim n) // qed.
133
134 theorem times_n_Sm : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6(n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6(\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m).
135 #n (elim n) normalize // qed.
136
137 theorem commutative_times : \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6
138 #n (elim n) normalize // qed. 
139
140 (* variant sym_times : \forall n,m:nat. n*m = m*n \def
141 symmetric_times. *)
142
143 theorem distributive_times_plus : \ 5a href="cic:/matita/basics/relations/distributive.def(1)"\ 6distributive\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/plus.fix(0,0,1)"\ 6plus\ 5/a\ 6.
144 #n (elim n) normalize // qed.
145
146 theorem distributive_times_plus_r :
147   ∀a,b,c:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. (b\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6c)\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 b\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6a.
148 // qed. 
149
150 theorem associative_times: \ 5a href="cic:/matita/basics/relations/associative.def(1)"\ 6associative\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6.
151 #n (elim n) normalize // qed.
152
153 lemma times_times: ∀x,y,z. x\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6(y\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6z) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 y\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6(x\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6z).
154 // qed. 
155
156 theorem times_n_1 : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 \ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 61\ 5/a\ 6.
157 #n // qed.
158
159 (* ci servono questi risultati? 
160 theorem times_O_to_O: ∀n,m:nat.n*m=O → n=O ∨ m=O.
161 napply nat_elim2 /2/ 
162 #n #m #H normalize #H1 napply False_ind napply not_eq_O_S
163 // qed.
164   
165 theorem times_n_SO : ∀n:nat. n = n * S O.
166 #n // qed.
167
168 theorem times_SSO_n : ∀n:nat. n + n = (S(S O)) * n.
169 normalize // qed.
170
171 nlemma times_SSO: \forall n.(S(S O))*(S n) = S(S((S(S O))*n)).
172 // qed.
173
174 theorem or_eq_eq_S: \forall n.\exists m. 
175 n = (S(S O))*m \lor n = S ((S(S O))*m).
176 #n (elim n)
177   ##[@ /2/
178   ##|#a #H nelim H #b#ornelim or#aeq
179     ##[@ b @ 2 //
180     ##|@ (S b) @ 1 /2/
181     ##]
182 qed.
183 *)
184
185 (******************** ordering relations ************************)
186
187 inductive le (n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6) : \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝
188   | le_n : le n n
189   | le_S : ∀ m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. le n m → le n (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m).
190
191 interpretation "natural 'less or equal to'" 'leq x y = (le x y).
192
193 interpretation "natural 'neither less nor equal to'" 'nleq x y = (Not (le x y)).
194
195 definition lt: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝ λn,m. \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
196
197 interpretation "natural 'less than'" 'lt x y = (lt x y).
198 interpretation "natural 'not less than'" 'nless x y = (Not (lt x y)).
199
200 (* lemma eq_lt: ∀n,m. (n < m) = (S n ≤ m).
201 // qed. *)
202
203 definition ge: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝ λn,m.m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
204
205 interpretation "natural 'greater or equal to'" 'geq x y = (ge x y).
206
207 definition gt: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop ≝ λn,m.m\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6n.
208
209 interpretation "natural 'greater than'" 'gt x y = (gt x y).
210 interpretation "natural 'not greater than'" 'ngtr x y = (Not (gt x y)).
211
212 theorem transitive_le : \ 5a href="cic:/matita/basics/relations/transitive.def(2)"\ 6transitive\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6.
213 #a #b #c #leab #lebc (elim lebc) /2/
214 qed.
215
216 (*
217 theorem trans_le: \forall n,m,p:nat. n \leq m \to m \leq p \to n \leq p
218 \def transitive_le. *)
219
220 theorem transitive_lt: \ 5a href="cic:/matita/basics/relations/transitive.def(2)"\ 6transitive\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6.
221 #a #b #c #ltab #ltbc (elim ltbc) /2/qed.
222
223 (*
224 theorem trans_lt: \forall n,m,p:nat. lt n m \to lt m p \to lt n p
225 \def transitive_lt. *)
226
227 theorem le_S_S: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
228 #n #m #lenm (elim lenm) /2/ qed.
229
230 theorem le_O_n : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
231 #n (elim n) /2/ qed.
232
233 theorem le_n_Sn : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
234 /2/ qed.
235
236 theorem le_pred_n : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
237 #n (elim n) // qed.
238
239 theorem monotonic_pred: \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6.
240 #n #m #lenm (elim lenm) /2/ qed.
241
242 theorem le_S_S_to_le: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
243 (* demo *)
244 /2/ qed.
245
246 (* this are instances of the le versions 
247 theorem lt_S_S_to_lt: ∀n,m. S n < S m → n < m.
248 /2/ qed. 
249
250 theorem lt_to_lt_S_S: ∀n,m. n < m → S n < S m.
251 /2/ qed. *)
252
253 theorem lt_to_not_zero : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/not_zero.def(1)"\ 6not_zero\ 5/a\ 6 m.
254 #n #m #Hlt (elim Hlt) // qed.
255
256 (* lt vs. le *)
257 theorem not_le_Sn_O: ∀ n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
258 #n @\ 5a href="cic:/matita/basics/logic/Not.con(0,1,1)"\ 6nmk\ 5/a\ 6 #Hlen0 @(\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_zero.def(2)"\ 6lt_to_not_zero\ 5/a\ 6 ?? Hlen0) qed.
259
260 theorem not_le_to_not_le_S_S: ∀ n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m.
261 /3/ qed.
262
263 theorem not_le_S_S_to_not_le: ∀ n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
264 /3/ qed.
265
266 theorem decidable_le: ∀n,m. \ 5a href="cic:/matita/basics/logic/decidable.def(1)"\ 6decidable\ 5/a\ 6 (n\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6m).
267 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #n /2/ #m * /3/ qed.
268
269 theorem decidable_lt: ∀n,m. \ 5a href="cic:/matita/basics/logic/decidable.def(1)"\ 6decidable\ 5/a\ 6 (n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m).
270 #n #m @\ 5a href="cic:/matita/arithmetics/nat/decidable_le.def(6)"\ 6decidable_le\ 5/a\ 6  qed.
271
272 theorem not_le_Sn_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
273 #n (elim n) /2/ qed.
274
275 (* this is le_S_S_to_le
276 theorem lt_S_to_le: ∀n,m:nat. n < S m → n ≤ m.
277 /2/ qed.
278 *)
279
280 lemma le_gen: ∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop.∀n.(∀i. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → P i) → P n.
281 /2/ qed.
282
283 theorem not_le_to_lt: ∀n,m. n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n.
284 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #n
285  [#abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/
286  |/2/
287  |#m #Hind #HnotleSS @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 /3/
288  ]
289 qed.
290
291 theorem lt_to_not_le: ∀n,m. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → m \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
292 #n #m #Hltnm (elim Hltnm) /3/ qed.
293
294 theorem not_lt_to_le: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'not less than'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
295 /4/ qed.
296
297 theorem le_to_not_lt: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'not less than'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
298 #n #m #H @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 /2/ (* /3/ *) qed.
299
300 (* lt and le trans *)
301
302 theorem lt_to_le_to_lt: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p.
303 #n #m #p #H #H1 (elim H1) /2/ qed.
304
305 theorem le_to_lt_to_lt: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p.
306 #n #m #p #H (elim H) /3/ qed.
307
308 theorem lt_S_to_lt: ∀n,m. \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m.
309 /2/ qed.
310
311 theorem ltn_to_ltO: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m.
312 /2/ qed.
313
314 (*
315 theorem lt_SO_n_to_lt_O_pred_n: \forall n:nat.
316 (S O) \lt n \to O \lt (pred n).
317 intros.
318 apply (ltn_to_ltO (pred (S O)) (pred n) ?).
319  apply (lt_pred (S O) n)
320  [ apply (lt_O_S O) 
321  | assumption
322  ]
323 qed. *)
324
325 theorem lt_O_n_elim: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → 
326   ∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop.(∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.P (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) → P n.
327 #n (elim n) // #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/
328 qed.
329
330 theorem S_pred: ∀n. \ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 60\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6(\ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 n) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n.
331 #n #posn (cases posn) //
332 qed.
333
334 (*
335 theorem lt_pred: \forall n,m. 
336   O < n \to n < m \to pred n < pred m. 
337 apply nat_elim2
338   [intros.apply False_ind.apply (not_le_Sn_O ? H)
339   |intros.apply False_ind.apply (not_le_Sn_O ? H1)
340   |intros.simplify.unfold.apply le_S_S_to_le.assumption
341   ]
342 qed.
343
344 theorem le_pred_to_le:
345  ∀n,m. O < m → pred n ≤ pred m → n ≤ m.
346 intros 2
347 elim n
348 [ apply le_O_n
349 | simplify in H2
350   rewrite > (S_pred m)
351   [ apply le_S_S
352     assumption
353   | assumption
354   ]
355 ].
356 qed.
357
358 *)
359
360 (* le to lt or eq *)
361 theorem le_to_or_lt_eq: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m \ 5a title="logical or" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m.
362 #n #m #lenm (elim lenm) /3/ qed.
363
364 (* not eq *)
365 theorem lt_to_not_eq : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
366 #n #m #H @\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 /2/ qed.
367
368 (*not lt 
369 theorem eq_to_not_lt: ∀a,b:nat. a = b → a ≮ b.
370 intros.
371 unfold Not.
372 intros.
373 rewrite > H in H1.
374 apply (lt_to_not_eq b b)
375 [ assumption
376 | reflexivity
377 ]
378 qed. 
379
380 theorem lt_n_m_to_not_lt_m_Sn: ∀n,m. n < m → m ≮ S n.
381 intros
382 unfold Not
383 intro
384 unfold lt in H
385 unfold lt in H1
386 generalize in match (le_S_S ? ? H)
387 intro
388 generalize in match (transitive_le ? ? ? H2 H1)
389 intro
390 apply (not_le_Sn_n ? H3).
391 qed. *)
392
393 theorem not_eq_to_le_to_lt: ∀n,m. n\ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6m → n\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6m → n\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6m.
394 #n #m #Hneq #Hle cases (\ 5a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(5)"\ 6le_to_or_lt_eq\ 5/a\ 6 ?? Hle) //
395 #Heq /3/ qed.
396 (*
397 nelim (Hneq Heq) qed. *)
398
399 (* le elimination *)
400 theorem le_n_O_to_eq : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6n.
401 #n (cases n) // #a  #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
402
403 theorem le_n_O_elim: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → ∀P: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →Prop. P \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 → P n.
404 #n (cases n) // #a #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed. 
405
406 theorem le_n_Sm_elim : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → 
407 ∀P:Prop. (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → P) → (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m → P) → P.
408 #n #m #Hle #P (elim Hle) /3/ qed.
409
410 (* le and eq *)
411
412 theorem le_to_le_to_eq: ∀n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m.
413 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 /4/
414 qed. 
415
416 theorem lt_O_S : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n.
417 /2/ qed.
418
419 (*
420 (* other abstract properties *)
421 theorem antisymmetric_le : antisymmetric nat le.
422 unfold antisymmetric.intros 2.
423 apply (nat_elim2 (\lambda n,m.(n \leq m \to m \leq n \to n=m))).
424 intros.apply le_n_O_to_eq.assumption.
425 intros.apply False_ind.apply (not_le_Sn_O ? H).
426 intros.apply eq_f.apply H.
427 apply le_S_S_to_le.assumption.
428 apply le_S_S_to_le.assumption.
429 qed.
430
431 theorem antisym_le: \forall n,m:nat. n \leq m \to m \leq n \to n=m
432 \def antisymmetric_le.
433
434 theorem le_n_m_to_lt_m_Sn_to_eq_n_m: ∀n,m. n ≤ m → m < S n → n=m.
435 intros
436 unfold lt in H1
437 generalize in match (le_S_S_to_le ? ? H1)
438 intro
439 apply antisym_le
440 assumption.
441 qed.
442 *)
443
444 (* well founded induction principles *)
445
446 theorem nat_elim1 : ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.∀P:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → Prop. 
447 (∀m.(∀p. p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → P p) → P m) → P n.
448 #n #P #H 
449 cut (∀q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. q \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → P q) /2/
450 (elim n) 
451  [#q #HleO (* applica male *) 
452     @(\ 5a href="cic:/matita/arithmetics/nat/le_n_O_elim.def(4)"\ 6le_n_O_elim\ 5/a\ 6 ? HleO)
453     @H #p #ltpO @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ (* 3 *)
454  |#p #Hind #q #HleS 
455     @H #a #lta @Hind @\ 5a href="cic:/matita/arithmetics/nat/le_S_S_to_le.def(5)"\ 6le_S_S_to_le\ 5/a\ 6 /2/
456  ]
457 qed.
458
459 (* some properties of functions *)
460
461 definition increasing ≝ λf:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. f n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 f (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n).
462
463 theorem increasing_to_monotonic: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
464   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 f.
465 #f #incr #n #m #ltnm (elim ltnm) /2/
466 qed.
467
468 theorem le_n_fn: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6
469   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 f n.
470 #f #incr #n (elim n) /2/
471 qed.
472
473 theorem increasing_to_le: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6
474   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → ∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a title="exists" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6i.m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 f i.
475 #f #incr #m (elim m) /2/#n * #a #lenfa
476 @(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ?? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 a)) /2/
477 qed.
478
479 theorem increasing_to_le2: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → 
480   ∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. f \ 5a title="natural number" href="cic:/fakeuri.def(1)"\ 60\ 5/a\ 6 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a title="exists" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6i. f i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="logical and" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 f (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 i).
481 #f #incr #m #lem (elim lem)
482   [@(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ? ? \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6) /2/
483   |#n #len * #a * #len #ltnr (cases(\ 5a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(5)"\ 6le_to_or_lt_eq\ 5/a\ 6 … ltnr)) #H
484     [@(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ? ? a) % /2/ 
485     |@(\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"\ 6ex_intro\ 5/a\ 6 ? ? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 a)) % //
486     ]
487   ]
488 qed.
489
490 theorem increasing_to_injective: ∀f:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 → \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
491   \ 5a href="cic:/matita/arithmetics/nat/increasing.def(2)"\ 6increasing\ 5/a\ 6 f → \ 5a href="cic:/matita/basics/relations/injective.def(1)"\ 6injective\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 f.
492 #f #incr #n #m cases(\ 5a href="cic:/matita/arithmetics/nat/decidable_le.def(6)"\ 6decidable_le\ 5/a\ 6 n m)
493   [#lenm cases(\ 5a href="cic:/matita/arithmetics/nat/le_to_or_lt_eq.def(5)"\ 6le_to_or_lt_eq\ 5/a\ 6 … lenm) //
494    #lenm #eqf @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6 … eqf) @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_eq.def(7)"\ 6lt_to_not_eq\ 5/a\ 6 
495    @\ 5a href="cic:/matita/arithmetics/nat/increasing_to_monotonic.def(4)"\ 6increasing_to_monotonic\ 5/a\ 6 //
496   |#nlenm #eqf @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6 … eqf) @\ 5a href="cic:/matita/basics/logic/sym_not_eq.def(4)"\ 6sym_not_eq\ 5/a\ 6 
497    @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_eq.def(7)"\ 6lt_to_not_eq\ 5/a\ 6 @\ 5a href="cic:/matita/arithmetics/nat/increasing_to_monotonic.def(4)"\ 6increasing_to_monotonic\ 5/a\ 6 /2/
498   ]
499 qed.
500
501 (*********************** monotonicity ***************************)
502 theorem monotonic_le_plus_r: 
503 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 (λm.n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m).
504 #n #a #b (elim n) normalize //
505 #m #H #leab @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 /2/ qed.
506
507 (*
508 theorem le_plus_r: ∀p,n,m:nat. n ≤ m → p + n ≤ p + m
509 ≝ monotonic_le_plus_r. *)
510
511 theorem monotonic_le_plus_l: 
512 ∀m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 (λn.n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m).
513 /2/ qed.
514
515 (*
516 theorem le_plus_l: \forall p,n,m:nat. n \le m \to n + p \le m + p
517 \def monotonic_le_plus_l. *)
518
519 theorem le_plus: ∀n1,n2,m1,m2:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2  → m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m2 
520 → n1 \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2 \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m2.
521 #n1 #n2 #m1 #m2 #len #lem @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (n1\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m2))
522 /2/ qed.
523
524 theorem le_plus_n :∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m.
525 /2/ qed. 
526
527 lemma le_plus_a: ∀a,n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m.
528 /2/ qed.
529
530 lemma le_plus_b: ∀b,n,m. n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
531 /2/ qed.
532
533 theorem le_plus_n_r :∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 n.
534 /2/ qed.
535
536 theorem eq_plus_to_le: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
537 // qed.
538
539 theorem le_plus_to_le: ∀a,n,m. a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
540 #a (elim a) normalize /3/ qed. 
541
542 theorem le_plus_to_le_r: ∀a,n,m. n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 a \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6a → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
543 /2/ qed. 
544
545 (* plus &amp; lt *)
546
547 theorem monotonic_lt_plus_r: 
548 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λm.n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m).
549 /2/ qed.
550
551 (*
552 variant lt_plus_r: \forall n,p,q:nat. p < q \to n + p < n + q \def
553 monotonic_lt_plus_r. *)
554
555 theorem monotonic_lt_plus_l: 
556 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λm.m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n).
557 /2/ qed.
558
559 (*
560 variant lt_plus_l: \forall n,p,q:nat. p < q \to p + n < q + n \def
561 monotonic_lt_plus_l. *)
562
563 theorem lt_plus: ∀n,m,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q → n \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 q.
564 #n #m #p #q #ltnm #ltpq
565 @(\ 5a href="cic:/matita/arithmetics/nat/transitive_lt.def(3)"\ 6transitive_lt\ 5/a\ 6 ? (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6q))/2/ qed.
566
567 theorem lt_plus_to_lt_l :∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6n → p\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6q.
568 /2/ qed.
569
570 theorem lt_plus_to_lt_r :∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6q → p\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6q.
571 /2/ qed.
572
573 (*
574 theorem le_to_lt_to_lt_plus: ∀a,b,c,d:nat.
575 a ≤ c → b < d → a + b < c+d.
576 (* bello /2/ un po' lento *)
577 #a #b #c #d #leac #lebd 
578 normalize napplyS le_plus // qed.
579 *)
580
581 (* times *)
582 theorem monotonic_le_times_r: 
583 ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/le.ind(1,0,1)"\ 6le\ 5/a\ 6 (λm. n \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 m).
584 #n #x #y #lexy (elim n) normalize//(* lento /2/*)
585 #a #lea @\ 5a href="cic:/matita/arithmetics/nat/le_plus.def(7)"\ 6le_plus\ 5/a\ 6 //
586 qed.
587
588 (*
589 theorem le_times_r: \forall p,n,m:nat. n \le m \to p*n \le p*m
590 \def monotonic_le_times_r. *)
591
592 (*
593 theorem monotonic_le_times_l: 
594 ∀m:nat.monotonic nat le (λn.n*m).
595 /2/ qed.
596 *)
597
598 (*
599 theorem le_times_l: \forall p,n,m:nat. n \le m \to n*p \le m*p
600 \def monotonic_le_times_l. *)
601
602 theorem le_times: ∀n1,n2,m1,m2:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6
603 n1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2  → m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m2 → n1\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m1 \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n2\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m2.
604 #n1 #n2 #m1 #m2 #len #lem @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (n1\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m2)) /2/
605 qed.
606
607 (* interessante *)
608 theorem lt_times_n: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6m.
609 #n #m #H /2/ qed.
610
611 theorem le_times_to_le: 
612 ∀a,n,m. \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 a → a \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 a \ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6 m → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
613 #a @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 normalize
614   [//
615   |#n #H1 #H2 
616      @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (a\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n)) /2/
617   |#n #m #H #lta #le
618      @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 @H /2/
619   ]
620 qed.
621
622 (*
623 theorem le_S_times_2: ∀n,m.O < m → n ≤ m → S n ≤ 2*m.
624 #n #m #posm #lenm  (* interessante *)
625 applyS (le_plus n m) // qed. *)
626
627 (* times &amp; lt *)
628 (*
629 theorem lt_O_times_S_S: ∀n,m:nat.O < (S n)*(S m).
630 intros.simplify.unfold lt.apply le_S_S.apply le_O_n.
631 qed. *)
632
633 (*
634 theorem lt_times_eq_O: \forall a,b:nat.
635 O < a → a * b = O → b = O.
636 intros.
637 apply (nat_case1 b)
638 [ intros.
639   reflexivity
640 | intros.
641   rewrite > H2 in H1.
642   rewrite > (S_pred a) in H1
643   [ apply False_ind.
644     apply (eq_to_not_lt O ((S (pred a))*(S m)))
645     [ apply sym_eq.
646       assumption
647     | apply lt_O_times_S_S
648     ]
649   | assumption
650   ]
651 ]
652 qed. 
653
654 theorem O_lt_times_to_O_lt: \forall a,c:nat.
655 O \lt (a * c) \to O \lt a.
656 intros.
657 apply (nat_case1 a)
658 [ intros.
659   rewrite > H1 in H.
660   simplify in H.
661   assumption
662 | intros.
663   apply lt_O_S
664 ]
665 qed.
666
667 lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m.
668 intros.
669 elim (le_to_or_lt_eq O ? (le_O_n m))
670   [assumption
671   |apply False_ind.
672    rewrite < H1 in H.
673    rewrite < times_n_O in H.
674    apply (not_le_Sn_O ? H)
675   ]
676 qed. *)
677
678 (*
679 theorem monotonic_lt_times_r: 
680 ∀n:nat.monotonic nat lt (λm.(S n)*m).
681 /2/ 
682 simplify.
683 intros.elim n.
684 simplify.rewrite < plus_n_O.rewrite < plus_n_O.assumption.
685 apply lt_plus.assumption.assumption.
686 qed. *)
687
688 theorem monotonic_lt_times_r: 
689   ∀c:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λt.(c\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6t)).
690 #c #posc #n #m #ltnm
691 (elim ltnm) normalize
692   [/2/ 
693   |#a #_ #lt1 @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 … lt1) //
694   ]
695 qed.
696
697 theorem monotonic_lt_times_l: 
698   ∀c:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → \ 5a href="cic:/matita/basics/relations/monotonic.def(1)"\ 6monotonic\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/lt.def(1)"\ 6lt\ 5/a\ 6 (λt.(t\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6c)).
699 /2/
700 qed.
701
702 theorem lt_to_le_to_lt_times: 
703 ∀n,m,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → p \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 q → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q → n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q.
704 #n #m #p #q #ltnm #lepq #posq
705 @(\ 5a href="cic:/matita/arithmetics/nat/le_to_lt_to_lt.def(4)"\ 6le_to_lt_to_lt\ 5/a\ 6 ? (n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q))
706   [@\ 5a href="cic:/matita/arithmetics/nat/monotonic_le_times_r.def(8)"\ 6monotonic_le_times_r\ 5/a\ 6 //
707   |@\ 5a href="cic:/matita/arithmetics/nat/monotonic_lt_times_l.def(9)"\ 6monotonic_lt_times_l\ 5/a\ 6 //
708   ]
709 qed.
710
711 theorem lt_times:∀n,m,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6m → p\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6q → n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q.
712 #n #m #p #q #ltnm #ltpq @\ 5a href="cic:/matita/arithmetics/nat/lt_to_le_to_lt_times.def(10)"\ 6lt_to_le_to_lt_times\ 5/a\ 6/2/
713 qed.
714
715 theorem lt_times_n_to_lt_l: 
716 ∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. p\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6n → p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q.
717 #n #p #q #Hlt (elim (\ 5a href="cic:/matita/arithmetics/nat/decidable_lt.def(7)"\ 6decidable_lt\ 5/a\ 6 p q)) //
718 #nltpq @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/absurd.def(2)"\ 6absurd\ 5/a\ 6 ? ? (\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 ? ? Hlt))
719 applyS \ 5a href="cic:/matita/arithmetics/nat/monotonic_le_times_r.def(8)"\ 6monotonic_le_times_r\ 5/a\ 6 /2/
720 qed.
721
722 theorem lt_times_n_to_lt_r: 
723 ∀n,p,q:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n\ 5a title="natural times" href="cic:/fakeuri.def(1)"\ 6*\ 5/a\ 6q → p \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 q.
724 /2/ qed.
725
726 (*
727 theorem nat_compare_times_l : \forall n,p,q:nat. 
728 nat_compare p q = nat_compare ((S n) * p) ((S n) * q).
729 intros.apply nat_compare_elim.intro.
730 apply nat_compare_elim.
731 intro.reflexivity.
732 intro.absurd (p=q).
733 apply (inj_times_r n).assumption.
734 apply lt_to_not_eq. assumption.
735 intro.absurd (q<p).
736 apply (lt_times_to_lt_r n).assumption.
737 apply le_to_not_lt.apply lt_to_le.assumption.
738 intro.rewrite < H.rewrite > nat_compare_n_n.reflexivity.
739 intro.apply nat_compare_elim.intro.
740 absurd (p<q).
741 apply (lt_times_to_lt_r n).assumption.
742 apply le_to_not_lt.apply lt_to_le.assumption.
743 intro.absurd (q=p).
744 symmetry.
745 apply (inj_times_r n).assumption.
746 apply lt_to_not_eq.assumption.
747 intro.reflexivity.
748 qed. *)
749
750 (* times and plus 
751 theorem lt_times_plus_times: \forall a,b,n,m:nat. 
752 a < n \to b < m \to a*m + b < n*m.
753 intros 3.
754 apply (nat_case n)
755   [intros.apply False_ind.apply (not_le_Sn_O ? H)
756   |intros.simplify.
757    rewrite < sym_plus.
758    unfold.
759    change with (S b+a*m1 \leq m1+m*m1).
760    apply le_plus
761     [assumption
762     |apply le_times
763       [apply le_S_S_to_le.assumption
764       |apply le_n
765       ]
766     ]
767   ]
768 qed. *)
769
770 (************************** minus ******************************)
771
772 let rec minus n m ≝ 
773  match n with 
774  [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6
775  | S p ⇒ 
776         match m with
777           [ O ⇒ \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 p
778     | S q ⇒ minus p q ]].
779         
780 interpretation "natural minus" 'minus x y = (minus x y).
781
782 theorem minus_S_S: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m.
783 // qed.
784
785 theorem minus_O_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
786 #n (cases n) // qed.
787
788 theorem minus_n_O: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
789 #n (cases n) // qed.
790
791 theorem minus_n_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
792 #n (elim n) // qed.
793
794 theorem minus_Sn_n: ∀n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n)\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
795 #n (elim n) normalize // qed.
796
797 theorem minus_Sn_m: ∀m,n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m).
798 (* qualcosa da capire qui 
799 #n #m #lenm nelim lenm napplyS refl_eq. *)
800 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 
801   [//
802   |#n #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ 
803   |#n #m #Hind #c applyS Hind /2/
804   ]
805 qed.
806
807 (*
808 theorem not_eq_to_le_to_le_minus: 
809   ∀n,m.n ≠ m → n ≤ m → n ≤ m - 1.
810 #n * #m (cases m// #m normalize
811 #H #H1 napply le_S_S_to_le
812 napplyS (not_eq_to_le_to_lt n (S m) H H1)
813 qed. *)
814
815 theorem eq_minus_S_pred: ∀n,m. n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6(n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m).
816 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 normalize // qed.
817
818 theorem plus_minus:
819 ∀m,n,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p)\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m.
820 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 
821   [//
822   |#n #p #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/
823   |normalize/3/
824   ]
825 qed.
826
827 theorem minus_plus_m_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (n\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m)\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m.
828 /2/ qed.
829
830 theorem plus_minus_m_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
831   m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m.
832 #n #m #lemn @\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 /2/ qed.
833
834 theorem le_plus_minus_m_m: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m.
835 #n (elim n) // #a #Hind #m (cases m) // normalize #n/2/  
836 qed.
837
838 theorem minus_to_plus :∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
839   m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 p → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p.
840 #n #m #p #lemn #eqp (applyS \ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6) //
841 qed.
842
843 theorem plus_to_minus :∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 p.
844 #n #m #p #eqp @\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 (applyS (\ 5a href="cic:/matita/arithmetics/nat/minus_plus_m_m.def(6)"\ 6minus_plus_m_m\ 5/a\ 6 p m))
845 qed.
846
847 theorem minus_pred_pred : ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6 \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 m → 
848 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/pred.def(1)"\ 6pred\ 5/a\ 6 m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 m.
849 #n #m #posn #posm @(\ 5a href="cic:/matita/arithmetics/nat/lt_O_n_elim.def(4)"\ 6lt_O_n_elim\ 5/a\ 6 n posn) @(\ 5a href="cic:/matita/arithmetics/nat/lt_O_n_elim.def(4)"\ 6lt_O_n_elim\ 5/a\ 6 m posm) //.
850 qed.
851
852
853 (*
854
855 theorem le_SO_minus: \forall n,m:nat.S n \leq m \to S O \leq m-n.
856 intros.elim H.elim (minus_Sn_n n).apply le_n.
857 rewrite > minus_Sn_m.
858 apply le_S.assumption.
859 apply lt_to_le.assumption.
860 qed.
861
862 theorem minus_le_S_minus_S: \forall n,m:nat. m-n \leq S (m-(S n)).
863 intros.
864 apply (nat_elim2 (\lambda n,m.m-n \leq S (m-(S n)))).
865 intro.elim n1.simplify.apply le_n_Sn.
866 simplify.rewrite < minus_n_O.apply le_n.
867 intros.simplify.apply le_n_Sn.
868 intros.simplify.apply H.
869 qed.
870
871 theorem lt_minus_S_n_to_le_minus_n : \forall n,m,p:nat. m-(S n) < p \to m-n \leq p. 
872 intros 3.intro.
873 (* autobatch *)
874 (* end auto($Revision: 9739 $) proof: TIME=1.33 SIZE=100 DEPTH=100 *)
875 apply (trans_le (m-n) (S (m-(S n))) p).
876 apply minus_le_S_minus_S.
877 assumption.
878 qed.
879
880 theorem le_minus_m: \forall n,m:nat. n-m \leq n.
881 intros.apply (nat_elim2 (\lambda m,n. n-m \leq n)).
882 intros.rewrite < minus_n_O.apply le_n.
883 intros.simplify.apply le_n.
884 intros.simplify.apply le_S.assumption.
885 qed.
886
887 theorem lt_minus_m: \forall n,m:nat. O < n \to O < m \to n-m \lt n.
888 intros.apply (lt_O_n_elim n H).intro.
889 apply (lt_O_n_elim m H1).intro.
890 simplify.unfold lt.apply le_S_S.apply le_minus_m.
891 qed.
892
893 theorem minus_le_O_to_le: \forall n,m:nat. n-m \leq O \to n \leq m.
894 intros 2.
895 apply (nat_elim2 (\lambda n,m:nat.n-m \leq O \to n \leq m)).
896 intros.apply le_O_n.
897 simplify.intros. assumption.
898 simplify.intros.apply le_S_S.apply H.assumption.
899 qed.
900 *)
901
902 (* monotonicity and galois *)
903
904 theorem monotonic_le_minus_l: 
905 ∀p,q,n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. q \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → q\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6n.
906 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 #p #q
907   [#lePO @(\ 5a href="cic:/matita/arithmetics/nat/le_n_O_elim.def(4)"\ 6le_n_O_elim\ 5/a\ 6 ? lePO) //
908   |//
909   |#Hind #n (cases n) // #a #leSS @Hind /2/
910   ]
911 qed.
912
913 theorem le_minus_to_plus: ∀n,m,p. n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → n\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m.
914 #n #m #p #lep @\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6
915   [|@\ 5a href="cic:/matita/arithmetics/nat/le_plus_minus_m_m.def(6)"\ 6le_plus_minus_m_m\ 5/a\ 6 | @\ 5a href="cic:/matita/arithmetics/nat/monotonic_le_plus_l.def(6)"\ 6monotonic_le_plus_l\ 5/a\ 6 // ]
916 qed.
917
918 theorem le_minus_to_plus_r: ∀a,b,c. c \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 b → a \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 b \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 c → a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 b.
919 #a #b #c #Hlecb #H >(\ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6 … Hlecb) /2/
920 qed.
921
922 theorem le_plus_to_minus: ∀n,m,p. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p.
923 #n #m #p #lep /2/ qed.
924
925 theorem le_plus_to_minus_r: ∀a,b,c. a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 c → a \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 c \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6b.
926 #a #b #c #H @(\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_le_r.def(6)"\ 6le_plus_to_le_r\ 5/a\ 6 … b) /2/
927 qed.
928
929 theorem lt_minus_to_plus: ∀a,b,c. a \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 b \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → a \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b.
930 #a #b #c #H @\ 5a href="cic:/matita/arithmetics/nat/not_le_to_lt.def(5)"\ 6not_le_to_lt\ 5/a\ 6 
931 @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 …H)) /2/
932 qed.
933
934 theorem lt_minus_to_plus_r: ∀a,b,c. a \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 b \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 c → a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 c \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 b.
935 #a #b #c #H @\ 5a href="cic:/matita/arithmetics/nat/not_le_to_lt.def(5)"\ 6not_le_to_lt\ 5/a\ 6 @(\ 5a href="cic:/matita/basics/logic/not_to_not.def(3)"\ 6not_to_not\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus.def(7)"\ 6le_plus_to_minus\ 5/a\ 6 …))
936 @\ 5a href="cic:/matita/arithmetics/nat/lt_to_not_le.def(7)"\ 6lt_to_not_le\ 5/a\ 6 //
937 qed.
938
939 theorem lt_plus_to_minus: ∀n,m,p. m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → n \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6m → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 p.
940 #n #m #p #lenm #H normalize <\ 5a href="cic:/matita/arithmetics/nat/minus_Sn_m.def(5)"\ 6minus_Sn_m\ 5/a\ 6 // @\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus.def(7)"\ 6le_plus_to_minus\ 5/a\ 6 //
941 qed.
942
943 theorem lt_plus_to_minus_r: ∀a,b,c. a \ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6 b \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c → a \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 c \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6 b.
944 #a #b #c #H @\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus_r.def(7)"\ 6le_plus_to_minus_r\ 5/a\ 6 //
945 qed. 
946
947 theorem monotonic_le_minus_r: 
948 ∀p,q,n:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. q \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 p → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6q.
949 #p #q #n #lepq @\ 5a href="cic:/matita/arithmetics/nat/le_plus_to_minus.def(7)"\ 6le_plus_to_minus\ 5/a\ 6
950 @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/le_plus_minus_m_m.def(6)"\ 6le_plus_minus_m_m\ 5/a\ 6 ? q)) /2/
951 qed.
952
953 theorem eq_minus_O: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
954   n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/nat.con(0,1,0)"\ 6O\ 5/a\ 6.
955 #n #m #lenm @(\ 5a href="cic:/matita/arithmetics/nat/le_n_O_elim.def(4)"\ 6le_n_O_elim\ 5/a\ 6 (n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m)) /2/
956 qed.
957
958 theorem distributive_times_minus: \ 5a href="cic:/matita/basics/relations/distributive.def(1)"\ 6distributive\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/times.fix(0,0,2)"\ 6times\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/minus.fix(0,0,1)"\ 6minus\ 5/a\ 6.
959 #a #b #c
960 (cases (\ 5a href="cic:/matita/arithmetics/nat/decidable_lt.def(7)"\ 6decidable_lt\ 5/a\ 6 b c)) #Hbc
961  [> \ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(9)"\ 6eq_minus_O\ 5/a\ 6 /2/ >\ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(9)"\ 6eq_minus_O\ 5/a\ 6 // 
962   @\ 5a href="cic:/matita/arithmetics/nat/monotonic_le_times_r.def(8)"\ 6monotonic_le_times_r\ 5/a\ 6 /2/
963  |@\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 (applyS \ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6) <\ 5a href="cic:/matita/arithmetics/nat/distributive_times_plus.def(7)"\ 6distributive_times_plus\ 5/a\ 6 
964   @\ 5a href="cic:/matita/basics/logic/eq_f.def(3)"\ 6eq_f\ 5/a\ 6 (applyS \ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6) /2/
965 qed.
966
967 theorem minus_plus: ∀n,m,p. n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n \ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6(m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p).
968 #n #m #p 
969 cases (\ 5a href="cic:/matita/arithmetics/nat/decidable_le.def(6)"\ 6decidable_le\ 5/a\ 6 (m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p) n) #Hlt
970   [@\ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6 @\ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/associative_plus.def(4)"\ 6associative_plus\ 5/a\ 6
971    @\ 5a href="cic:/matita/arithmetics/nat/minus_to_plus.def(8)"\ 6minus_to_plus\ 5/a\ 6 //
972   |cut (n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6p) [@(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 … (\ 5a href="cic:/matita/arithmetics/nat/le_n_Sn.def(1)"\ 6le_n_Sn\ 5/a\ 6 …)) @\ 5a href="cic:/matita/arithmetics/nat/not_le_to_lt.def(5)"\ 6not_le_to_lt\ 5/a\ 6 //]
973    #H >\ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(9)"\ 6eq_minus_O\ 5/a\ 6 /2/ >\ 5a href="cic:/matita/arithmetics/nat/eq_minus_O.def(9)"\ 6eq_minus_O\ 5/a\ 6 // 
974   ]
975 qed.
976
977 (*
978 theorem plus_minus: ∀n,m,p. p ≤ m → (n+m)-p = n +(m-p).
979 #n #m #p #lepm @plus_to_minus >(commutative_plus p)
980 >associative_plus <plus_minus_m_m //
981 qed.  *)
982
983 theorem minus_minus: ∀n,m,p:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. p \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n →
984   p\ 5a title="natural plus" href="cic:/fakeuri.def(1)"\ 6+\ 5/a\ 6(n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6m) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 n\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6(m\ 5a title="natural minus" href="cic:/fakeuri.def(1)"\ 6-\ 5/a\ 6p).
985 #n #m #p #lepm #lemn
986 @\ 5a href="cic:/matita/basics/logic/sym_eq.def(2)"\ 6sym_eq\ 5/a\ 6 @\ 5a href="cic:/matita/arithmetics/nat/plus_to_minus.def(7)"\ 6plus_to_minus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/associative_plus.def(4)"\ 6associative_plus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6 //
987 <\ 5a href="cic:/matita/arithmetics/nat/commutative_plus.def(5)"\ 6commutative_plus\ 5/a\ 6 <\ 5a href="cic:/matita/arithmetics/nat/plus_minus_m_m.def(7)"\ 6plus_minus_m_m\ 5/a\ 6 //
988 qed.
989
990 (*********************** boolean arithmetics ********************) 
991 include "basics/bool.ma".
992
993 let rec eqb n m ≝ 
994 match n with 
995   [ O ⇒ match m with [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 | S q ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6
996   | S p ⇒ match m with [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 | S q ⇒ eqb p q]
997   ].
998
999 theorem eqb_elim : ∀ n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.∀ P:\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6 → Prop.
1000 (n\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6m → (P \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6)) → (n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → (P \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6)) → (P (\ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m)). 
1001 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 
1002   [#n (cases n) normalize /3/ 
1003   |normalize /3/
1004   |normalize /4/ 
1005   ] 
1006 qed.
1007
1008 theorem eqb_n_n: ∀n. \ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
1009 #n (elim n) normalize // qed. 
1010
1011 theorem eqb_true_to_eq: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m.
1012 #n #m @(\ 5a href="cic:/matita/arithmetics/nat/eqb_elim.def(5)"\ 6eqb_elim\ 5/a\ 6 n m) // #_ #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1013
1014 theorem eqb_false_to_not_eq: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6\ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 → n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1015 #n #m @(\ 5a href="cic:/matita/arithmetics/nat/eqb_elim.def(5)"\ 6eqb_elim\ 5/a\ 6 n m) /2/ qed.
1016
1017 theorem eq_to_eqb_true: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.n \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
1018 // qed.
1019
1020 theorem not_eq_to_eqb_false: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6.
1021   n \ 5a title="leibnitz's non-equality" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6  m → \ 5a href="cic:/matita/arithmetics/nat/eqb.fix(0,0,1)"\ 6eqb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6.
1022 #n #m #noteq @\ 5a href="cic:/matita/arithmetics/nat/eqb_elim.def(5)"\ 6eqb_elim\ 5/a\ 6// #Heq @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1023
1024 let rec leb n m ≝ 
1025 match n with 
1026     [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6
1027     | (S p) ⇒
1028         match m with 
1029         [ O ⇒ \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6
1030               | (S q) ⇒ leb p q]].
1031
1032 theorem leb_elim: ∀n,m:\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6. ∀P:\ 5a href="cic:/matita/basics/bool/bool.ind(1,0,0)"\ 6bool\ 5/a\ 6 → Prop. 
1033 (n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → P \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6) → (n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → P \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6) → P (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m).
1034 @\ 5a href="cic:/matita/arithmetics/nat/nat_elim2.def(2)"\ 6nat_elim2\ 5/a\ 6 normalize
1035   [/2/
1036   |/3/
1037   |#n #m #Hind #P #Pt #Pf @Hind
1038     [#lenm @Pt @\ 5a href="cic:/matita/arithmetics/nat/le_S_S.def(2)"\ 6le_S_S\ 5/a\ 6 // |#nlenm @Pf /2/ ]
1039   ]
1040 qed.
1041
1042 theorem leb_true_to_le:∀n,m.\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6 → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1043 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #_ #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1044
1045 theorem leb_false_to_not_le:∀n,m.
1046   \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6 → n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1047 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #_ #abs @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1048
1049 theorem le_to_leb_true: ∀n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,1,0)"\ 6true\ 5/a\ 6.
1050 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #H #H1 @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1051
1052 theorem not_le_to_leb_false: ∀n,m. n \ 5a title="natural 'neither less nor equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6.
1053 #n #m @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 // #H #H1 @\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"\ 6False_ind\ 5/a\ 6 /2/ qed.
1054
1055 theorem lt_to_leb_false: ∀n,m. m \ 5a title="natural 'less than'" href="cic:/fakeuri.def(1)"\ 6<\ 5/a\ 6 n → \ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/basics/bool/bool.con(0,2,0)"\ 6false\ 5/a\ 6.
1056 /3/ qed.
1057
1058 (* serve anche ltb? 
1059 ndefinition ltb ≝λn,m. leb (S n) m.
1060
1061 theorem ltb_elim: ∀n,m:nat. ∀P:bool → Prop. 
1062 (n < m → P true) → (n ≮ m → P false) → P (ltb n m).
1063 #n #m #P #Hlt #Hnlt
1064 napply leb_elim /3/ qed.
1065
1066 theorem ltb_true_to_lt:∀n,m.ltb n m = true → n < m.
1067 #n #m #Hltb napply leb_true_to_le nassumption
1068 qed.
1069
1070 theorem ltb_false_to_not_lt:∀n,m.
1071   ltb n m = false → n ≮ m.
1072 #n #m #Hltb napply leb_false_to_not_le nassumption
1073 qed.
1074
1075 theorem lt_to_ltb_true: ∀n,m. n < m → ltb n m = true.
1076 #n #m #Hltb napply le_to_leb_true nassumption
1077 qed.
1078
1079 theorem le_to_ltb_false: ∀n,m. m \le n → ltb n m = false.
1080 #n #m #Hltb napply lt_to_leb_false /2/
1081 qed. *)
1082
1083 (* min e max *)
1084 definition min: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 ≝
1085 λn.λm. \ 5a href="cic:/matita/basics/bool/if_then_else.def(1)"\ 6if_then_else\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m) n m.
1086
1087 definition max: \ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 →\ 5a href="cic:/matita/arithmetics/nat/nat.ind(1,0,0)"\ 6nat\ 5/a\ 6 ≝
1088 λn.λm. \ 5a href="cic:/matita/basics/bool/if_then_else.def(1)"\ 6if_then_else\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m) m n.
1089
1090 lemma commutative_min: \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6.
1091 #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 
1092   [@\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/
1093   |#notle >(\ 5a href="cic:/matita/arithmetics/nat/le_to_leb_true.def(7)"\ 6le_to_leb_true\ 5/a\ 6 …) // @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) /2/
1094   ] qed.
1095
1096 lemma le_minr: ∀i,n,m. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6 n m → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m.
1097 #i #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/ qed. 
1098
1099 lemma le_minl: ∀i,n,m. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6 n m → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n.
1100 /2/ qed.
1101
1102 lemma to_min: ∀i,n,m. i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 n → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 m → i \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 \ 5a href="cic:/matita/arithmetics/nat/min.def(2)"\ 6min\ 5/a\ 6 n m.
1103 #i #n #m #lein #leim normalize (cases (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m)) 
1104 normalize // qed.
1105
1106 lemma commutative_max: \ 5a href="cic:/matita/basics/relations/commutative.def(1)"\ 6commutative\ 5/a\ 6 ? \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6.
1107 #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 
1108   [@\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/
1109   |#notle >(\ 5a href="cic:/matita/arithmetics/nat/le_to_leb_true.def(7)"\ 6le_to_leb_true\ 5/a\ 6 …) // @(\ 5a href="cic:/matita/arithmetics/nat/transitive_le.def(3)"\ 6transitive_le\ 5/a\ 6 ? (\ 5a href="cic:/matita/arithmetics/nat/nat.con(0,2,0)"\ 6S\ 5/a\ 6 m)) /2/
1110   ] qed.
1111
1112 lemma le_maxl: ∀i,n,m. \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6 n m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i.
1113 #i #n #m normalize @\ 5a href="cic:/matita/arithmetics/nat/leb_elim.def(6)"\ 6leb_elim\ 5/a\ 6 normalize /2/ qed. 
1114
1115 lemma le_maxr: ∀i,n,m. \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6 n m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i.
1116 /2/ qed.
1117
1118 lemma to_max: ∀i,n,m. n \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i → \ 5a href="cic:/matita/arithmetics/nat/max.def(2)"\ 6max\ 5/a\ 6 n m \ 5a title="natural 'less or equal to'" href="cic:/fakeuri.def(1)"\ 6\ 5/a\ 6 i.
1119 #i #n #m #leni #lemi normalize (cases (\ 5a href="cic:/matita/arithmetics/nat/leb.fix(0,0,1)"\ 6leb\ 5/a\ 6 n m)) 
1120 normalize // qed.
1121 >>>>>>> .r11514