]> matita.cs.unibo.it Git - helm.git/blob - weblib/tutorial/chapter1.ma
d2f3b31f29ae922e5e38f88c7c640d052fda48b2
[helm.git] / weblib / tutorial / chapter1.ma
1 (*
2 This is an interactive tutorial. To let you interact on line with the system, 
3 you must first of all register yourself.
4
5 Before starting, let us briefly explain the meaning of the menu buttons. 
6 With the Advance and Retract buttons you respectively perform and undo single 
7 computational steps. Each step consists in reading a user command, and processing
8 it. The part of the user input file (called script) already executed by the 
9 system will be colored, and will not be editable any more. The advance bottom 
10 will also automatically advance the focus of the window, but you can inspect the 
11 whole file using the scroll bars, as usual. Comments are skipped.
12 Try to advance and retract a few steps, to get the feeling of the system. You can 
13 also come back here by using the top button, that takes you at the beginning of 
14 a file. The play button is meant to process the script up to a position 
15 previously selected by the user; the bottom button execute the whole script. 
16 That's it: we are\ 5span style="font-family: Verdana,sans-serif;"\ 6 \ 5/span\ 6now ready to start.
17
18 The first thing to say is that in a system like Matita's very few things are 
19 built-in: not even booleans or logical connectives. The main philosophy of the 
20 system is to let you define your own data-types and functions using a powerful 
21 computational mechanism based on the declaration of inductive types. 
22
23 Let us start this tutorial with a simple example based on the following well 
24 known problem.
25
26 \ 5h2 class="section"\ 6The goat, the wolf and the cabbage\ 5/h2\ 6\ 5div class="paragraph"\ 6\ 5/div\ 6A farmer need to transfer a goat, a wolf and a cabbage across a river, but there
27 is only one place available on his boat. Furthermore, the goat will eat the 
28 cabbage if they are left alone on the same bank, and similarly the wolf will eat
29 the goat. The problem consists in bringing all three items safely across the 
30 river. 
31
32 Our first data type defines the two banks of the river, which will be named east
33 and west. It is a simple example of enumerated type, defined by explicitly 
34 declaring all its elements. The type itself is called "bank".
35 Before giving its definition we "include" the file "logic.ma" that contains a 
36 few preliminary notions not worth discussing for the moment.
37 *)
38
39 include "basics/logic.ma".
40
41 inductive bank: Type[0] ≝
42 | east : bank 
43 | west : bank.
44
45 (* We can now define a simple function computing, for each bank of the river, the
46 opposite one. *)
47
48 definition opposite ≝ λs.
49 match s with
50   [ east ⇒ \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6
51   | west ⇒ \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6
52   ].
53
54 (* Functions are live entities, and can be actually computed. To check this, let
55 us state the property that the opposite bank of east is west; every lemma needs a 
56 name for further reference, and we call it "east_to_west". *)
57  
58 lemma east_to_west : \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6.
59
60 (* If you stop the execution here you will see a new window on the  right side
61 of the screen: it is the goal window, providing a sequent like representation of
62 the form
63
64 B1
65 B2
66 ....
67 Bk
68 -----------------------
69 A
70
71 for each open goal remaining to be solved. A is the conclusion of the goal and 
72 B1, ..., Bk is its context, that is the set of current hypothesis and type 
73 declarations. In this case, we have only one goal, and its context is empty. 
74 The proof proceeds by typing commands to the system. In this case, we
75 want to evaluate the function, that can be done by invoking the  "normalize"
76 command:
77 *)
78
79 normalize
80
81 (* By executing it - just type the advance command - you will see that the goal
82 has changed to west = west, by reducing the subexpression (opposite east). 
83 You may use the retract bottom to undo the step, if you wish. 
84
85 The new goal west = west is trivial: it is just a consequence of reflexivity.
86 Such trivial steps can be just closed in Matita by typing a double slash. 
87 We complete the proof by the qed command, that instructs the system to store the
88 lemma performing some book-keeping operations. 
89 *)
90
91 // qed.
92
93 (* In exactly the same way, we can prove that the opposite side of west is east.
94 In this case, we avoid the unnecessary simplification step: // will take care of 
95 it. *) 
96
97 lemma west_to_east : \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6.
98 // qed.
99
100 (* A slightly more complex problem consists in proving that opposite is 
101 idempotent *)
102
103 lemma idempotent_opposite : ∀x. \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 (\ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 x) \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 x.
104
105 (* we start the proof moving x from the conclusion into the context, that is a 
106 (backward) introduction step. Matita syntax for an introduction step is simply 
107 the sharp character followed by the name of the item to be moved into the 
108 context. This also allows us to rename the item, if needed: for instance if we 
109 wish to rename x into b (since it is a bank), we just type #b. *)
110
111 #b
112
113 (* See the effect of the execution in the goal window on the right: b has been 
114 added to the context (replacing x in the conclusion); moreover its implicit type 
115 "bank" has been made explicit. 
116
117 But how are we supposed to proceed, now? Simplification cannot help us, since b
118 is a variable: just try to call normalize and you will see that it has no effect.
119 The point is that we must proceed by cases according to the possible values of b,
120 namely east and west. To this aim, you must invoke the cases command, followed by
121 the name of the hypothesis (more generally, an arbitrary expression) that must be
122 the object of the case analysis (in our case, b).
123 *)
124
125 cases b
126
127 (* Executing the previous command has the effect of opening two subgoals, 
128 corresponding to the two cases b=east and b=west: you may switch from one to the 
129 other by using the hyperlinks over the top of the goal window. 
130 Both goals can be closed by trivial computations, so we may use // as usual.
131 If we had to treat each subgoal in a different way, we should focus on each of 
132 them in turn, in a way that will be described at the end of this section.
133 *)
134
135 // qed.
136
137 (* Instead of working with functions, it is sometimes convenient to work with
138 predicates. For instance, instead of defining a function computing the opposite 
139 bank, we could declare a predicate stating when two banks are opposite to each 
140 other. Only two cases are possible, leading naturally two the following 
141 definition:
142 *)
143
144 inductive opp : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6 → Prop ≝ 
145 | east_west : opp \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6
146 | west_east : opp \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6.
147
148 (* In precisely the same way as "bank" is the smallest type containing east and
149 west, opp is the smallest predicate containing the two sub-cases east_west and
150 weast_east. If you have some familiarity with Prolog, you may look at opp as the
151 predicate definined by the two clauses - in this case, the two facts -
152 (opp east west) and (opp west east). 
153 At the end of this section we shall prove that forall a and b, 
154                   (opp a b) iff a = opposite b.
155 For the moment, it is time to proceed with our formalization of the farmer's 
156 problem. 
157 A state of the system is defined by the position of four item: the goat, the 
158 wolf, the cabbage, and the boat. The simplest way to declare such a data type
159 is to use a record.
160 *)
161
162 record state : Type[0] ≝
163   {goat_pos : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6;
164    wolf_pos : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6;
165    cabbage_pos: \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6;
166    boat_pos : \ 5a href="cic:/matita/tutorial/chapter1/bank.ind(1,0,0)"\ 6bank\ 5/a\ 6}.
167
168 (* When you define a record named foo, the system automatically defines a record 
169 constructor named mk_foo. To construct a new record you pass as arguments to 
170 mk_foo the values of the record fields *)
171
172 definition start ≝ \ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6.
173 definition end ≝ \ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6.
174
175 (* We must now define the possible moves. A natural way to do it is in the form 
176 of a relation (a binary predicate) over states. *)
177
178 inductive move : \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → Prop ≝
179 | move_goat: ∀g,g1,w,c. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 g g1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c g) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g1 w c g1) 
180 | move_wolf: ∀g,w,w1,c. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 w w1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c w) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w1 c w1)
181 | move_cabbage: ∀g,w,c,c1.\ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 c c1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c c) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c1 c1)
182 | move_boat: ∀g,w,c,b,b1. \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 b b1 → move (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c b) (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c b1).
183
184 (* A state is safe if either the goat is on the same bank of the boat, or both 
185 the wolf and the cabbage are on the opposite bank of the goat. *)
186
187 inductive safe_state : \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → Prop ≝
188 | with_boat : ∀g,w,c.safe_state (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g w c g)
189 | opposite_side : ∀g,g1,b.\ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 g g1 → safe_state (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 g g1 g1 b).
190
191 (* Finally, a state y is reachable from x if either there is a single move 
192 leading from x to y, or there is a safe state z such that z is reachable from x 
193 and there is a move leading from z to y *)
194
195 inductive reachable : \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → \ 5a href="cic:/matita/tutorial/chapter1/state.ind(1,0,0)"\ 6state\ 5/a\ 6 → Prop ≝
196 | one : ∀x,y.\ 5a href="cic:/matita/tutorial/chapter1/move.ind(1,0,0)"\ 6move\ 5/a\ 6 x y → reachable x y
197 | more : ∀x,z,y. \ 5span style="text-decoration: underline;"\ 6\ 5/span\ 6reachable x z → \ 5a href="cic:/matita/tutorial/chapter1/safe_state.ind(1,0,0)"\ 6safe_state\ 5/a\ 6 z → \ 5span style="text-decoration: underline;"\ 6\ 5/span\ 6\ 5a href="cic:/matita/tutorial/chapter1/move.ind(1,0,0)"\ 6move\ 5/a\ 6 z y → reachable x y.
198
199 (* Remarkably, Matita is now able to solve the problem by itslef, provided
200 you allow automation to exploit more resources. The command /n/ is similar to
201 //, where n is a measure of this complexity: in particular it is a bound to
202 the depth of the expected proof tree (more precisely, to the number of nested
203 applicative nodes). In this case, there is a solution in six moves, and we
204 need a few more applications to handle reachability, and side conditions. 
205 The magic number to let automation work is, in this case, 9.  *)
206
207 lemma problem: \ 5a href="cic:/matita/tutorial/chapter1/reachable.ind(1,0,0)"\ 6reachable\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/start.def(1)"\ 6start\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/end.def(1)"\ 6end\ 5/a\ 6.
208 normalize /9/ qed. 
209
210 (* Let us now try to derive the proof in a more interactive way. Of course, we
211 expect to need several moves to transfer all items from a bank to the other, so 
212 we should start our proof by applying "more".
213 *)
214
215 lemma problem1: \ 5a href="cic:/matita/tutorial/chapter1/reachable.ind(1,0,0)"\ 6reachable\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/start.def(1)"\ 6start\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/end.def(1)"\ 6end\ 5/a\ 6.
216 normalize @\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6
217
218 (* We have now four open subgoals:
219
220   X : STATE
221   Y : reachable [east,east,east,east] X
222   W : safe_state X
223   Z : move X [west,west,west,west]
224  
225 That is, we must guess a state X, such that this is reachable from start, it is 
226 safe, and there is a move leading from X to end. All goals are active, that is
227 emphasized by the fact that they are all red. Any command typed by the user is
228 normally applied in parallel to all active goals, but clearly we must proceed 
229 here is a different way for each of them. The way to do it, is by structuring
230 the script using the following syntax: [...|... |...|...] where we typically have
231 as many cells inside the brackets as the number of the active subgoals. The
232 interesting point is that we can associate with the three symbol "[", "|" and
233 "]" a small-step semantics that allow to execute them individually. In particular
234
235 - the operator "[" opens a new focusing section for the currently active goals,
236   and focus on the first of them
237 - the operator "|" shift the focus to the next goal
238 - the operator "]" close the focusing section, falling back to the previous level
239   and adding to it all remaining goals not yet closed
240
241 Let us see the effect of the "[" on our proof:
242 *)
243
244   [  
245
246 (* As you see, only the first goal has now the focus on. Moreover, all goals got
247 a progressive numerical label, to help designating them, if needed. 
248 We can now proceed in several possible ways. The most straightforward way is to 
249 provide the intermediate state, that is [east,west,west,east]. We can do it, by 
250 just applying this term. *)
251
252    @(\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6
253
254 (* This application closes the goal; at present, no goal has the focus on.
255 In order to act on the next goal, we must focus on it using the "|" operator. In
256 this case, we would like to skip the next goal, and focus on the trivial third 
257 subgoal: a simple way to do it, is by retyping "|". The proof that 
258 [east,west,west,east] is safe is trivial and can be done with //.*)
259
260   || //
261
262 (*
263 We then advance to the next goal, namely the fact that there is a move from 
264 [east,west,west,east] to [west,west,west,west]; this is trivial too, but it 
265 requires /2/ since move_goat opens an additional subgoal. By applying "]" we
266 refocus on the skipped goal, going back to a situation similar to the one we
267 started with. *)
268
269   | /2/ ] 
270
271 (* Let us perform the next step, namely moving back the boat, in a sligtly 
272 different way. The more operation expects as second argument the new 
273 intermediate state, hence instead of applying more we can apply this term
274 already instatated on the next intermediate state. As first argument, we
275 type a question mark that stands for an implicit argument to be guessed by
276 the syste. *)
277
278 @(\ 5a href="cic:/matita/tutorial/chapter1/reachable.con(0,2,0)"\ 6more\ 5/a\ 6 ? (\ 5a href="cic:/matita/tutorial/chapter1/state.con(0,1,0)"\ 6mk_state\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,1,0)"\ 6east\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/bank.con(0,2,0)"\ 6west\ 5/a\ 6))
279
280 (* We now get three independent subgoals, all actives, and two of them are 
281 trivial. We\ 5span style="font-family: Verdana,sans-serif;"\ 6 \ 5/span\ 6can just apply automation to all of them, and it will close the two
282 trivial goals. *)
283
284 /2/
285
286 (*  *)
287
288 (* We start the proof introducing a, b and the hypothesis opp a b, that we
289 call oppab. *)
290 #a #b #oppab
291
292 (* Now we proceed by cases on the possible proofs of (opp a b), that is on the 
293 possible shapes of oppab. By definition, there are only two possibilities, 
294 namely east_west or west_east. Both subcases are trivial, and can be closed by
295 automation *)
296
297 cases oppab // qed.
298
299 (* Let us come to the opposite direction. *)
300
301 lemma opposite_to_opp: ∀a,b. a \ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"\ 6=\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/opposite.def(1)"\ 6opposite\ 5/a\ 6 b → \ 5a href="cic:/matita/tutorial/chapter1/opp.ind(1,0,0)"\ 6opp\ 5/a\ 6 a b.
302
303 (* As usual, we start introducing a, b and the hypothesis (a = opposite b), 
304 that we call eqa. *)
305
306 #a #b #eqa
307
308 (* The right way to proceed, now, is by rewriting a into (opposite b). We do
309 this by typing ">eqa". If we wished to rewrite in the opposite direction, namely
310 opposite b into a, we would have typed "<eqa". *)
311
312 >eqa
313
314 (* We conclude the proof by cases on b. *)
315
316 cases b // qed.
317
318 (* Let's do now an important remark. 
319 Let us state again the problem of the goat, the wolf and the cabbage, and let
320 us retry to run automation. *)
321
322 lemma problem_bis: \ 5a href="cic:/matita/tutorial/chapter1/reachable.ind(1,0,0)"\ 6reachable\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/start.def(1)"\ 6start\ 5/a\ 6 \ 5a href="cic:/matita/tutorial/chapter1/end.def(1)"\ 6end\ 5/a\ 6.
323 normalize /9/