2 \ 5h1 class="section"
\ 6Formal Languages
\ 5/h1
\ 6
3 In this chapter we shall apply our notion of DeqSet, and the list operations
4 defined in Chapter 4 to formal languages. A formal language is an arbitrary set
5 of words over a given alphabet, that we shall represent as a predicate over words.
7 include "tutorial/chapter5.ma".
9 (* A word (or string) over an alphabet S is just a list of elements of S.*)
10 definition word ≝ λS:
\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"
\ 6DeqSet
\ 5/a
\ 6.
\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"
\ 6list
\ 5/a
\ 6\ 5span class="error" title="Parse error: SYMBOL '.' expected after [grafite_ncommand] (in [executable])"
\ 6\ 5/span
\ 6 S.
12 (* For any alphabet there is only one word of length 0, the
\ 5i
\ 6empty word
\ 5/i
\ 6, which is
15 notation "ϵ" non associative with precedence 90 for @{ 'epsilon }.
16 interpretation "epsilon" 'epsilon = (nil ?).
18 (* The operation that consists in appending two words to form a new word, whose
19 length is the sum of the lengths of the original words is called concatenation.
20 String concatenation is just the append operation over lists, hence there is no
21 point to define it. Similarly, many of its properties, such as the fact that
22 concatenating a word with the empty word gives the original word, follow by
23 general results over lists.
27 \ 5h2 class="section"
\ 6Operations over languages
\ 5/h2
\ 6
28 Languages inherit all the basic operations for sets, namely union, intersection,
29 complementation, substraction, and so on. In addition, we may define some new
30 operations induced by string concatenation, and in particular the concatenation
31 A · B of two languages A and B, the so called Kleene's star A* of A and the
32 derivative of a language A w.r.t. a given character a. *)
34 definition cat : ∀S,l1,l2,w.Prop ≝
35 λS.λl1,l2.λw:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S.
\ 5a title="exists" href="cic:/fakeuri.def(1)"
\ 6∃
\ 5/a
\ 6\ 5span class="error" title="Parse error: [sym_] or [ident] expected after [sym∃] (in [term])"
\ 6\ 5/span
\ 6w1,w2.w1
\ 5a title="append" href="cic:/fakeuri.def(1)"
\ 6@
\ 5/a
\ 6 w2
\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 6 w
\ 5a title="logical and" href="cic:/fakeuri.def(1)"
\ 6∧
\ 5/a
\ 6 l1 w1
\ 5a title="logical and" href="cic:/fakeuri.def(1)"
\ 6∧
\ 5/a
\ 6\ 5span class="error" title="Parse error: [term] expected after [sym∧] (in [term])"
\ 6\ 5/span
\ 6 l2 w2.
37 notation "a · b" non associative with precedence 60 for @{ 'middot $a $b}.
38 interpretation "cat lang" 'middot a b = (cat ? a b).
41 (* Given a language l, the Kleene's star of l, denoted by l*, is the set of
42 finite-length strings that can be generated by concatenating arbitrary strings of
43 l. In other words, w belongs to l* is and only if there exists a list of strings
44 w1,w2,...wk all belonging to l, such that l = w1w2...wk.
45 We need to define the latter operations. The following flatten function takes in
46 input a list of words and concatenates them together. *)
48 let rec flatten (S :
\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"
\ 6DeqSet
\ 5/a
\ 6) (l :
\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"
\ 6list
\ 5/a
\ 6 (
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S)) on l :
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S ≝
49 match l with [ nil ⇒
\ 5a title="nil" href="cic:/fakeuri.def(1)"
\ 6[
\ 5/a
\ 6 ] | cons w tl ⇒ w
\ 5a title="append" href="cic:/fakeuri.def(1)"
\ 6@
\ 5/a
\ 6 flatten ? tl ].
51 (* Given a list of words l and a language r, (conjunct l r) is true if and only if
52 all words in l are in r, that is for every w in l, r w holds. *)
54 let rec conjunct (S :
\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"
\ 6DeqSet
\ 5/a
\ 6) (l :
\ 5a href="cic:/matita/basics/list/list.ind(1,0,1)"
\ 6list
\ 5/a
\ 6\ 5span class="error" title="Parse error: RPAREN expected after [term] (in [arg])"
\ 6\ 5/span
\ 6 (
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S)) (r :
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S → Prop) on l: Prop ≝
55 match l with [ nil ⇒
\ 5a href="cic:/matita/basics/logic/True.ind(1,0,0)"
\ 6True
\ 5/a
\ 6 | cons w tl ⇒ r w
\ 5a title="logical and" href="cic:/fakeuri.def(1)"
\ 6∧
\ 5/a
\ 6 conjunct ? tl r ].
57 (* We are ready to give the formal definition of the Kleene's star of l:
58 a word w belongs to l* is and only if there exists a list of strings
59 lw such that (conjunct lw l) and l = flatten lw. *)
61 definition star ≝ λS.λl.λw:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S.
\ 5a title="exists" href="cic:/fakeuri.def(1)"
\ 6∃
\ 5/a
\ 6lw.
\ 5a href="cic:/matita/tutorial/chapter6/flatten.fix(0,1,4)"
\ 6flatten
\ 5/a
\ 6 ? lw
\ 5a title="leibnitz's equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 6 w
\ 5a title="logical and" href="cic:/fakeuri.def(1)"
\ 6∧
\ 5/a
\ 6 \ 5a href="cic:/matita/tutorial/chapter6/conjunct.fix(0,1,4)"
\ 6conjunct
\ 5/a
\ 6 ? lw l.
62 notation "a ^ *" non associative with precedence 90 for @{ 'star $a}.
63 interpretation "star lang" 'star l = (star ? l).
65 (* The derivative of a language A with respect to a character a is the set of
66 all strings w such that aw is in A. *)
68 definition deriv ≝ λS.λA:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S → Prop.λa,w. A (a
\ 5a title="cons" href="cic:/fakeuri.def(1)"
\ 6:
\ 5/a
\ 6:w).
71 \ 5h2 class="section"
\ 6Language equalities
\ 5/h2
\ 6
72 Equality between languages is just the usual extensional equality between
73 sets. The operation of concatenation behaves well with respect to this equality. *)
75 lemma cat_ext_l: ∀S.∀A,B,C:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S →Prop.
76 A
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 C → A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 B
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 C
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 B.
77 #S #A #B #C #H #w % * #w1 * #w2 * * #eqw #inw1 #inw2
78 cases (H w1) /
\ 5span class="autotactic"
\ 66
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
81 lemma cat_ext_r: ∀S.∀A,B,C:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S →Prop.
82 B
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 C → A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 B
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 C.
83 #S #A #B #C #H #w % * #w1 * #w2 * * #eqw #inw1 #inw2
84 cases (H w2) /
\ 5span class="autotactic"
\ 66
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
87 (* Concatenating a language with the empty language results in the
89 lemma cat_empty_l: ∀S.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S→Prop.
\ 5a title="empty set" href="cic:/fakeuri.def(1)"
\ 6∅
\ 5/a
\ 6 \ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 A
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61
\ 5a title="empty set" href="cic:/fakeuri.def(1)"
\ 6∅
\ 5/a
\ 6.
90 #S #A #w % [|*] * #w1 * #w2 * * #_ *
93 (* Concatenating a language l with the singleton language containing the
94 empty string, results in the language l; that is {ϵ} is a left and right
95 unit with respect to concatenation. *)
97 lemma epsilon_cat_r: ∀S.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S →Prop.
98 A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"
\ 6{
\ 5/a
\ 6\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6}
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 A.
100 [* #w1 * #w2 * * #eqw #inw1 normalize #eqw2 <eqw //
101 |#inA @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … w) @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 …
\ 5a title="nil" href="cic:/fakeuri.def(1)"
\ 6[
\ 5/a
\ 6 ]) /
\ 5span class="autotactic"
\ 63
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
105 lemma epsilon_cat_l: ∀S.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S →Prop.
106 \ 5a title="singleton" href="cic:/fakeuri.def(1)"
\ 6{
\ 5/a
\ 6\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6}
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 A
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 A.
108 [* #w1 * #w2 * * #eqw normalize #eqw2 <eqw <eqw2 //
109 |#inA @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 …
\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6) @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … w) /
\ 5span class="autotactic"
\ 63
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
113 (* Concatenation is distributive w.r.t. union. *)
115 lemma distr_cat_r: ∀S.∀A,B,C:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S →Prop.
116 (A
\ 5a title="union" href="cic:/fakeuri.def(1)"
\ 6∪
\ 5/a
\ 6 B)
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 C
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 C
\ 5a title="union" href="cic:/fakeuri.def(1)"
\ 6∪
\ 5/a
\ 6 B
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 C.
118 [* #w1 * #w2 * * #eqw * /
\ 5span class="autotactic"
\ 66
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/Or.con(0,1,2)"
\ 6or_introl
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/Or.con(0,2,2)"
\ 6or_intror
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/ |* * #w1 * #w2 * * /
\ 5span class="autotactic"
\ 66
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/Or.con(0,1,2)"
\ 6or_introl
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/Or.con(0,2,2)"
\ 6or_intror
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/]
121 lemma distr_cat_r_eps: ∀S.∀A,C:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S →Prop.
122 (A
\ 5a title="union" href="cic:/fakeuri.def(1)"
\ 6∪
\ 5/a
\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"
\ 6{
\ 5/a
\ 6\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6})
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 C
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 C
\ 5a title="union" href="cic:/fakeuri.def(1)"
\ 6∪
\ 5/a
\ 6 C.
123 #S #A #C @
\ 5a href="cic:/matita/tutorial/chapter4/eqP_trans.def(3)"
\ 6eqP_trans
\ 5/a
\ 6 [|@
\ 5a href="cic:/matita/tutorial/chapter6/distr_cat_r.def(5)"
\ 6distr_cat_r
\ 5/a
\ 6 |@
\ 5a href="cic:/matita/tutorial/chapter4/eqP_union_l.def(3)"
\ 6eqP_union_l
\ 5/a
\ 6 @
\ 5a href="cic:/matita/tutorial/chapter6/epsilon_cat_l.def(5)"
\ 6epsilon_cat_l
\ 5/a
\ 6]
126 (* The following is a major property of derivatives *)
128 lemma deriv_middot: ∀S,A,B,a.
\ 5a title="logical not" href="cic:/fakeuri.def(1)"
\ 6¬
\ 5/a
\ 6 A
\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6 →
\ 5a href="cic:/matita/tutorial/chapter6/deriv.def(4)"
\ 6deriv
\ 5/a
\ 6 S (A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6B) a
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 (
\ 5a href="cic:/matita/tutorial/chapter6/deriv.def(4)"
\ 6deriv
\ 5/a
\ 6 S A a)
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 B.
129 #S #A #B #a #noteps #w normalize %
131 [* #w2 * * #_ #Aeps @
\ 5a href="cic:/matita/basics/logic/False_ind.fix(0,1,1)"
\ 6False_ind
\ 5/a
\ 6 /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/absurd.def(2)"
\ 6absurd
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
132 |#b #w2 * #w3 * * whd in ⊢ ((??%?)→?); #H destruct
133 #H #H1 @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … w2) @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … w3) % // % //
135 |* #w1 * #w2 * * #H #H1 #H2 @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … (a
\ 5a title="cons" href="cic:/fakeuri.def(1)"
\ 6:
\ 5/a
\ 6:w1))
136 @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … w2) % // % normalize //
141 \ 5h2 class="section"
\ 6Main Properties of Kleene's star
\ 5/h2
\ 6
142 We conclude this section with some important properties of Kleene's
143 star that will be used in the following chapters. *)
145 lemma espilon_in_star: ∀S.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S → Prop.
146 A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6*
\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6.
147 #S #A @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 …
\ 5a title="nil" href="cic:/fakeuri.def(1)"
\ 6[
\ 5/a
\ 6 ]) normalize /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6,
\ 5a href="cic:/matita/basics/logic/True.con(0,1,0)"
\ 6I
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
150 lemma cat_to_star:∀S.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S → Prop.
151 ∀w1,w2. A w1 → A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6* w2 → A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6* (w1
\ 5a title="append" href="cic:/fakeuri.def(1)"
\ 6@
\ 5/a
\ 6w2).
152 #S #A #w1 #w2 #Aw * #l * #H #H1 @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … (w1
\ 5a title="cons" href="cic:/fakeuri.def(1)"
\ 6:
\ 5/a
\ 6:l))
153 % normalize /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
156 lemma fix_star: ∀S.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S → Prop.
157 A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6*
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 A
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6*
\ 5a title="union" href="cic:/fakeuri.def(1)"
\ 6∪
\ 5/a
\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"
\ 6{
\ 5/a
\ 6\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6}.
159 [* #l generalize in match w; -w cases l [normalize #w * /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/Or.con(0,2,2)"
\ 6or_intror
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/]
160 #w1 #tl #w * whd in ⊢ ((??%?)→?); #eqw whd in ⊢ (%→?); *
161 #w1A #cw1 %1 @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … w1) @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … (
\ 5a href="cic:/matita/tutorial/chapter6/flatten.fix(0,1,4)"
\ 6flatten
\ 5/a
\ 6 S tl))
162 % /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/ whd @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … tl) /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/
163 |* [2: whd in ⊢ (%→?); #eqw <eqw //]
164 * #w1 * #w2 * * #eqw <eqw @
\ 5a href="cic:/matita/tutorial/chapter6/cat_to_star.def(6)"
\ 6cat_to_star
\ 5/a
\ 6
168 lemma star_fix_eps : ∀S.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S → Prop.
169 A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6*
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 (A
\ 5a title="substraction" href="cic:/fakeuri.def(1)"
\ 6-
\ 5/a
\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"
\ 6{
\ 5/a
\ 6\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6})
\ 5a title="cat lang" href="cic:/fakeuri.def(1)"
\ 6·
\ 5/a
\ 6 A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6*
\ 5a title="union" href="cic:/fakeuri.def(1)"
\ 6∪
\ 5/a
\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"
\ 6{
\ 5/a
\ 6\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6}.
172 [* whd in ⊢ ((??%?)→?); #eqw #_ %2 <eqw //
173 |* [#tl #Hind * #H * #_ #H2 @Hind % [@H | //]
174 |#a #w1 #tl #Hind * whd in ⊢ ((??%?)→?); #H1 * #H2 #H3 %1
175 @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … (a
\ 5a title="cons" href="cic:/fakeuri.def(1)"
\ 6:
\ 5/a
\ 6:w1)) @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … (
\ 5a href="cic:/matita/tutorial/chapter6/flatten.fix(0,1,4)"
\ 6flatten
\ 5/a
\ 6 S tl)) %
176 [% [@H1 | normalize % /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/sym_not_eq.def(4)"
\ 6sym_not_eq
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/] |whd @(
\ 5a href="cic:/matita/basics/logic/ex.con(0,1,2)"
\ 6ex_intro
\ 5/a
\ 6 … tl) /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/And.con(0,1,2)"
\ 6conj
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/]
179 |* [* #w1 * #w2 * * #eqw * #H1 #_ <eqw @
\ 5a href="cic:/matita/tutorial/chapter6/cat_to_star.def(6)"
\ 6cat_to_star
\ 5/a
\ 6 //
180 | whd in ⊢ (%→?); #H <H //
185 lemma star_epsilon: ∀S:
\ 5a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"
\ 6DeqSet
\ 5/a
\ 6.∀A:
\ 5a href="cic:/matita/tutorial/chapter6/word.def(3)"
\ 6word
\ 5/a
\ 6 S → Prop.
186 A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6*
\ 5a title="union" href="cic:/fakeuri.def(1)"
\ 6∪
\ 5/a
\ 6 \ 5a title="singleton" href="cic:/fakeuri.def(1)"
\ 6{
\ 5/a
\ 6\ 5a title="epsilon" href="cic:/fakeuri.def(1)"
\ 6ϵ
\ 5/a
\ 6}
\ 5a title="extensional equality" href="cic:/fakeuri.def(1)"
\ 6=
\ 5/a
\ 61 A
\ 5a title="star lang" href="cic:/fakeuri.def(1)"
\ 6^
\ 5/a
\ 6*.
187 #S #A #w % /
\ 5span class="autotactic"
\ 62
\ 5span class="autotrace"
\ 6 trace
\ 5a href="cic:/matita/basics/logic/Or.con(0,1,2)"
\ 6or_introl
\ 5/a
\ 6\ 5/span
\ 6\ 5/span
\ 6/ * //