(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) (* $Id$ *) open Printf open DisambiguateTypes open UriManager module Ast = CicNotationPt (* the integer is an offset to be added to each location *) exception NoWellTypedInterpretation of int * ((Token.flocation list * string * string) list * (DisambiguateTypes.domain_item * DisambiguateTypes.codomain_item) list * Token.flocation option * string Lazy.t * bool) list exception PathNotWellFormed (** raised when an environment is not enough informative to decide *) exception Try_again of string Lazy.t type aliases = bool * DisambiguateTypes.environment type 'a disambiguator_input = string * int * 'a type domain = domain_tree list and domain_tree = Node of Token.flocation list * domain_item * domain let rec string_of_domain = function [] -> "" | Node (_,domain_item,l)::tl -> DisambiguateTypes.string_of_domain_item domain_item ^ " [ " ^ string_of_domain l ^ " ] " ^ string_of_domain tl let rec filter_map_domain f = function [] -> [] | Node (locs,domain_item,l)::tl -> match f locs domain_item with None -> filter_map_domain f l @ filter_map_domain f tl | Some res -> res :: filter_map_domain f l @ filter_map_domain f tl let rec map_domain f = function [] -> [] | Node (locs,domain_item,l)::tl -> f locs domain_item :: map_domain f l @ map_domain f tl let uniq_domain dom = let rec aux seen = function [] -> seen,[] | Node (locs,domain_item,l)::tl -> if List.mem domain_item seen then let seen,l = aux seen l in let seen,tl = aux seen tl in seen, l @ tl else let seen,l = aux (domain_item::seen) l in let seen,tl = aux seen tl in seen, Node (locs,domain_item,l)::tl in snd (aux [] dom) let debug = false let debug_print s = if debug then prerr_endline (Lazy.force s) else () (* (** print benchmark information *) let benchmark = true let max_refinements = ref 0 (* benchmarking is not thread safe *) let actual_refinements = ref 0 let domain_size = ref 0 let choices_avg = ref 0. *) let descr_of_domain_item = function | Id s -> s | Symbol (s, _) -> s | Num i -> string_of_int i type 'a test_result = | Ok of 'a * Cic.metasenv | Ko of Token.flocation option * string Lazy.t | Uncertain of Token.flocation option * string Lazy.t let refine_term metasenv context uri term ugraph ~localization_tbl = (* if benchmark then incr actual_refinements; *) assert (uri=None); debug_print (lazy (sprintf "TEST_INTERPRETATION: %s" (CicPp.ppterm term))); try let term', _, metasenv',ugraph1 = CicRefine.type_of_aux' metasenv context term ugraph ~localization_tbl in (Ok (term', metasenv')),ugraph1 with exn -> let rec process_exn loc = function HExtlib.Localized (loc,exn) -> process_exn (Some loc) exn | CicRefine.Uncertain msg -> debug_print (lazy ("UNCERTAIN!!! [" ^ (Lazy.force msg) ^ "] " ^ CicPp.ppterm term)) ; Uncertain (loc,msg),ugraph | CicRefine.RefineFailure msg -> debug_print (lazy (sprintf "PRUNED!!!\nterm%s\nmessage:%s" (CicPp.ppterm term) (Lazy.force msg))); Ko (loc,msg),ugraph | exn -> raise exn in process_exn None exn let refine_obj metasenv context uri obj ugraph ~localization_tbl = assert (context = []); debug_print (lazy (sprintf "TEST_INTERPRETATION: %s" (CicPp.ppobj obj))) ; try let obj', metasenv,ugraph = CicRefine.typecheck metasenv uri obj ~localization_tbl in (Ok (obj', metasenv)),ugraph with exn -> let rec process_exn loc = function HExtlib.Localized (loc,exn) -> process_exn (Some loc) exn | CicRefine.Uncertain msg -> debug_print (lazy ("UNCERTAIN!!! [" ^ (Lazy.force msg) ^ "] " ^ CicPp.ppobj obj)) ; Uncertain (loc,msg),ugraph | CicRefine.RefineFailure msg -> debug_print (lazy (sprintf "PRUNED!!!\nterm%s\nmessage:%s" (CicPp.ppobj obj) (Lazy.force msg))) ; Ko (loc,msg),ugraph | exn -> raise exn in process_exn None exn let resolve (env: codomain_item Environment.t) (item: domain_item) ?(num = "") ?(args = []) () = try snd (Environment.find item env) env num args with Not_found -> failwith ("Domain item not found: " ^ (DisambiguateTypes.string_of_domain_item item)) (* TODO move it to Cic *) let find_in_context name context = let rec aux acc = function | [] -> raise Not_found | Cic.Name hd :: tl when hd = name -> acc | _ :: tl -> aux (acc + 1) tl in aux 1 context let interpretate_term ~(context: Cic.name list) ~env ~uri ~is_path ast ~localization_tbl = assert (uri = None); let rec aux ~localize loc (context: Cic.name list) = function | CicNotationPt.AttributedTerm (`Loc loc, term) -> let res = aux ~localize loc context term in if localize then Cic.CicHash.add localization_tbl res loc; res | CicNotationPt.AttributedTerm (_, term) -> aux ~localize loc context term | CicNotationPt.Appl (CicNotationPt.Symbol (symb, i) :: args) -> let cic_args = List.map (aux ~localize loc context) args in resolve env (Symbol (symb, i)) ~args:cic_args () | CicNotationPt.Appl terms -> Cic.Appl (List.map (aux ~localize loc context) terms) | CicNotationPt.Binder (binder_kind, (var, typ), body) -> let cic_type = aux_option ~localize loc context (Some `Type) typ in let cic_name = CicNotationUtil.cic_name_of_name var in let cic_body = aux ~localize loc (cic_name :: context) body in (match binder_kind with | `Lambda -> Cic.Lambda (cic_name, cic_type, cic_body) | `Pi | `Forall -> Cic.Prod (cic_name, cic_type, cic_body) | `Exists -> resolve env (Symbol ("exists", 0)) ~args:[ cic_type; Cic.Lambda (cic_name, cic_type, cic_body) ] ()) | CicNotationPt.Case (term, indty_ident, outtype, branches) -> let cic_term = aux ~localize loc context term in let cic_outtype = aux_option ~localize loc context None outtype in let do_branch ((head, _, args), term) = let rec do_branch' context = function | [] -> aux ~localize loc context term | (name, typ) :: tl -> let cic_name = CicNotationUtil.cic_name_of_name name in let cic_body = do_branch' (cic_name :: context) tl in let typ = match typ with | None -> Cic.Implicit (Some `Type) | Some typ -> aux ~localize loc context typ in Cic.Lambda (cic_name, typ, cic_body) in do_branch' context args in let (indtype_uri, indtype_no) = match indty_ident with | Some (indty_ident, _) -> (match resolve env (Id indty_ident) () with | Cic.MutInd (uri, tyno, _) -> (uri, tyno) | Cic.Implicit _ -> raise (Try_again (lazy "The type of the term to be matched is still unknown")) | _ -> raise (Invalid_choice (lazy "The type of the term to be matched is not (co)inductive!"))) | None -> let fst_constructor = match branches with | ((head, _, _), _) :: _ -> head | [] -> raise (Invalid_choice (lazy "The type of the term to be matched is an inductive type without constructors that cannot be determined")) in (match resolve env (Id fst_constructor) () with | Cic.MutConstruct (indtype_uri, indtype_no, _, _) -> (indtype_uri, indtype_no) | Cic.Implicit _ -> raise (Try_again (lazy "The type of the term to be matched is still unknown")) | _ -> raise (Invalid_choice (lazy "The type of the term to be matched is not (co)inductive!"))) in Cic.MutCase (indtype_uri, indtype_no, cic_outtype, cic_term, (List.map do_branch branches)) | CicNotationPt.Cast (t1, t2) -> let cic_t1 = aux ~localize loc context t1 in let cic_t2 = aux ~localize loc context t2 in Cic.Cast (cic_t1, cic_t2) | CicNotationPt.LetIn ((name, typ), def, body) -> let cic_def = aux ~localize loc context def in let cic_name = CicNotationUtil.cic_name_of_name name in let cic_def = match typ with | None -> cic_def | Some t -> Cic.Cast (cic_def, aux ~localize loc context t) in let cic_body = aux ~localize loc (cic_name :: context) body in Cic.LetIn (cic_name, cic_def, cic_body) | CicNotationPt.LetRec (kind, defs, body) -> let context' = List.fold_left (fun acc (_, (name, _), _, _) -> CicNotationUtil.cic_name_of_name name :: acc) context defs in let cic_body = let unlocalized_body = aux ~localize:false loc context' body in match unlocalized_body with Cic.Rel 1 -> `AvoidLetInNoAppl | Cic.Appl (Cic.Rel 1::l) -> (try let l' = List.map (function t -> let t',subst,metasenv = CicMetaSubst.delift_rels [] [] 1 t in assert (subst=[]); assert (metasenv=[]); t') l in (* We can avoid the LetIn. But maybe we need to recompute l' so that it is localized *) if localize then match body with CicNotationPt.AttributedTerm (_,CicNotationPt.Appl(_::l)) -> let l' = List.map (aux ~localize loc context) l in `AvoidLetIn l' | _ -> assert false else `AvoidLetIn l' with CicMetaSubst.DeliftingARelWouldCaptureAFreeVariable -> if localize then `AddLetIn (aux ~localize loc context' body) else `AddLetIn unlocalized_body) | _ -> if localize then `AddLetIn (aux ~localize loc context' body) else `AddLetIn unlocalized_body in let inductiveFuns = List.map (fun (params, (name, typ), body, decr_idx) -> let add_binders kind t = List.fold_right (fun var t -> CicNotationPt.Binder (kind, var, t)) params t in let cic_body = aux ~localize loc context' (add_binders `Lambda body) in let cic_type = aux_option ~localize loc context (Some `Type) (HExtlib.map_option (add_binders `Pi) typ) in let name = match CicNotationUtil.cic_name_of_name name with | Cic.Anonymous -> CicNotationPt.fail loc "Recursive functions cannot be anonymous" | Cic.Name name -> name in (name, decr_idx, cic_type, cic_body)) defs in let counter = ref ~-1 in let build_term funs = (* this is the body of the fold_right function below. Rationale: Fix * and CoFix cases differs only in an additional index in the * inductiveFun list, see Cic.term *) match kind with | `Inductive -> (fun (var, _, _, _) cic -> incr counter; let fix = Cic.Fix (!counter,funs) in match cic with `Recipe (`AddLetIn cic) -> `Term (Cic.LetIn (Cic.Name var, fix, cic)) | `Recipe (`AvoidLetIn l) -> `Term (Cic.Appl (fix::l)) | `Recipe `AvoidLetInNoAppl -> `Term fix | `Term t -> `Term (Cic.LetIn (Cic.Name var, fix, t))) | `CoInductive -> let funs = List.map (fun (name, _, typ, body) -> (name, typ, body)) funs in (fun (var, _, _, _) cic -> incr counter; let cofix = Cic.CoFix (!counter,funs) in match cic with `Recipe (`AddLetIn cic) -> `Term (Cic.LetIn (Cic.Name var, cofix, cic)) | `Recipe (`AvoidLetIn l) -> `Term (Cic.Appl (cofix::l)) | `Recipe `AvoidLetInNoAppl -> `Term cofix | `Term t -> `Term (Cic.LetIn (Cic.Name var, cofix, t))) in (match List.fold_right (build_term inductiveFuns) inductiveFuns (`Recipe cic_body) with `Recipe _ -> assert false | `Term t -> t) | CicNotationPt.Ident _ | CicNotationPt.Uri _ when is_path -> raise PathNotWellFormed | CicNotationPt.Ident (name, subst) | CicNotationPt.Uri (name, subst) as ast -> let is_uri = function CicNotationPt.Uri _ -> true | _ -> false in (try if is_uri ast then raise Not_found;(* don't search the env for URIs *) let index = find_in_context name context in if subst <> None then CicNotationPt.fail loc "Explicit substitutions not allowed here"; Cic.Rel index with Not_found -> let cic = if is_uri ast then (* we have the URI, build the term out of it *) try CicUtil.term_of_uri (UriManager.uri_of_string name) with UriManager.IllFormedUri _ -> CicNotationPt.fail loc "Ill formed URI" else resolve env (Id name) () in let mk_subst uris = let ids_to_uris = List.map (fun uri -> UriManager.name_of_uri uri, uri) uris in (match subst with | Some subst -> List.map (fun (s, term) -> (try List.assoc s ids_to_uris, aux ~localize loc context term with Not_found -> raise (Invalid_choice (lazy "The provided explicit named substitution is trying to instantiate a named variable the object is not abstracted on")))) subst | None -> List.map (fun uri -> uri, Cic.Implicit None) uris) in (try match cic with | Cic.Const (uri, []) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.Const (uri, mk_subst uris) | Cic.Var (uri, []) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.Var (uri, mk_subst uris) | Cic.MutInd (uri, i, []) -> (try let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.MutInd (uri, i, mk_subst uris) with CicEnvironment.Object_not_found _ -> (* if we are here it is probably the case that during the definition of a mutual inductive type we have met an occurrence of the type in one of its constructors. However, the inductive type is not yet in the environment *) (*here the explicit_named_substituion is assumed to be of length 0 *) Cic.MutInd (uri,i,[])) | Cic.MutConstruct (uri, i, j, []) -> let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in let uris = CicUtil.params_of_obj o in Cic.MutConstruct (uri, i, j, mk_subst uris) | Cic.Meta _ | Cic.Implicit _ as t -> (* debug_print (lazy (sprintf "Warning: %s must be instantiated with _[%s] but we do not enforce it" (CicPp.ppterm t) (String.concat "; " (List.map (fun (s, term) -> s ^ " := " ^ CicNotationPtPp.pp_term term) subst)))); *) t | _ -> raise (Invalid_choice (lazy "??? Can this happen?")) with CicEnvironment.CircularDependency _ -> raise (Invalid_choice (lazy "Circular dependency in the environment")))) | CicNotationPt.Implicit -> Cic.Implicit None | CicNotationPt.UserInput -> Cic.Implicit (Some `Hole) | CicNotationPt.Num (num, i) -> resolve env (Num i) ~num () | CicNotationPt.Meta (index, subst) -> let cic_subst = List.map (function None -> None | Some term -> Some (aux ~localize loc context term)) subst in Cic.Meta (index, cic_subst) | CicNotationPt.Sort `Prop -> Cic.Sort Cic.Prop | CicNotationPt.Sort `Set -> Cic.Sort Cic.Set | CicNotationPt.Sort (`Type u) -> Cic.Sort (Cic.Type u) | CicNotationPt.Sort `CProp -> Cic.Sort Cic.CProp | CicNotationPt.Symbol (symbol, instance) -> resolve env (Symbol (symbol, instance)) () | _ -> assert false (* god bless Bologna *) and aux_option ~localize loc (context: Cic.name list) annotation = function | None -> Cic.Implicit annotation | Some term -> aux ~localize loc context term in aux ~localize:true HExtlib.dummy_floc context ast let interpretate_path ~context path = let localization_tbl = Cic.CicHash.create 23 in (* here we are throwing away useful localization informations!!! *) fst ( interpretate_term ~context ~env:Environment.empty ~uri:None ~is_path:true path ~localization_tbl, localization_tbl) let interpretate_obj ~context ~env ~uri ~is_path obj ~localization_tbl = assert (context = []); assert (is_path = false); let interpretate_term = interpretate_term ~localization_tbl in match obj with | CicNotationPt.Inductive (params,tyl) -> let uri = match uri with Some uri -> uri | None -> assert false in let context,params = let context,res = List.fold_left (fun (context,res) (name,t) -> let t = match t with None -> CicNotationPt.Implicit | Some t -> t in let name = CicNotationUtil.cic_name_of_name name in name::context,(name, interpretate_term context env None false t)::res ) ([],[]) params in context,List.rev res in let add_params = List.fold_right (fun (name,ty) t -> Cic.Prod (name,ty,t)) params in let name_to_uris = snd ( List.fold_left (*here the explicit_named_substituion is assumed to be of length 0 *) (fun (i,res) (name,_,_,_) -> i + 1,(name,name,Cic.MutInd (uri,i,[]))::res ) (0,[]) tyl) in let con_env = DisambiguateTypes.env_of_list name_to_uris env in let tyl = List.map (fun (name,b,ty,cl) -> let ty' = add_params (interpretate_term context env None false ty) in let cl' = List.map (fun (name,ty) -> let ty' = add_params (interpretate_term context con_env None false ty) in name,ty' ) cl in name,b,ty',cl' ) tyl in Cic.InductiveDefinition (tyl,[],List.length params,[]) | CicNotationPt.Record (params,name,ty,fields) -> let uri = match uri with Some uri -> uri | None -> assert false in let context,params = let context,res = List.fold_left (fun (context,res) (name,t) -> let t = match t with None -> CicNotationPt.Implicit | Some t -> t in let name = CicNotationUtil.cic_name_of_name name in name::context,(name, interpretate_term context env None false t)::res ) ([],[]) params in context,List.rev res in let add_params = List.fold_right (fun (name,ty) t -> Cic.Prod (name,ty,t)) params in let ty' = add_params (interpretate_term context env None false ty) in let fields' = snd ( List.fold_left (fun (context,res) (name,ty,_coercion,arity) -> let context' = Cic.Name name :: context in context',(name,interpretate_term context env None false ty)::res ) (context,[]) fields) in let concl = (*here the explicit_named_substituion is assumed to be of length 0 *) let mutind = Cic.MutInd (uri,0,[]) in if params = [] then mutind else Cic.Appl (mutind::CicUtil.mk_rels (List.length params) (List.length fields)) in let con = List.fold_left (fun t (name,ty) -> Cic.Prod (Cic.Name name,ty,t)) concl fields' in let con' = add_params con in let tyl = [name,true,ty',["mk_" ^ name,con']] in let field_names = List.map (fun (x,_,y,z) -> x,y,z) fields in Cic.InductiveDefinition (tyl,[],List.length params,[`Class (`Record field_names)]) | CicNotationPt.Theorem (flavour, name, ty, bo) -> let attrs = [`Flavour flavour] in let ty' = interpretate_term [] env None false ty in (match bo,flavour with None,`Axiom -> Cic.Constant (name,None,ty',[],attrs) | Some bo,`Axiom -> assert false | None,_ -> Cic.CurrentProof (name,[],Cic.Implicit None,ty',[],attrs) | Some bo,_ -> let bo' = Some (interpretate_term [] env None false bo) in Cic.Constant (name,bo',ty',[],attrs)) let rec domain_of_term ?(loc = HExtlib.dummy_floc) ~context = function | Ast.AttributedTerm (`Loc loc, term) -> domain_of_term ~loc ~context term | Ast.AttributedTerm (_, term) -> domain_of_term ~loc ~context term | Ast.Symbol (symbol, instance) -> [ Node ([loc], Symbol (symbol, instance), []) ] (* to be kept in sync with Ast.Appl (Ast.Symbol ...) *) | Ast.Appl (Ast.Symbol (symbol, instance) as hd :: args) | Ast.Appl (Ast.AttributedTerm (_,Ast.Symbol (symbol, instance)) as hd :: args) -> let args_dom = List.fold_right (fun term acc -> domain_of_term ~loc ~context term @ acc) args [] in let loc = match hd with Ast.AttributedTerm (`Loc loc,_) -> loc | _ -> loc in [ Node ([loc], Symbol (symbol, instance), args_dom) ] | Ast.Appl (Ast.Ident (name, subst) as hd :: args) | Ast.Appl (Ast.AttributedTerm (_,Ast.Ident (name, subst)) as hd :: args) -> let args_dom = List.fold_right (fun term acc -> domain_of_term ~loc ~context term @ acc) args [] in let loc = match hd with Ast.AttributedTerm (`Loc loc,_) -> loc | _ -> loc in (try (* the next line can raise Not_found *) ignore(find_in_context name context); if subst <> None then Ast.fail loc "Explicit substitutions not allowed here" else args_dom with Not_found -> (match subst with | None -> [ Node ([loc], Id name, args_dom) ] | Some subst -> let terms = List.fold_left (fun dom (_, term) -> let dom' = domain_of_term ~loc ~context term in dom @ dom') [] subst in [ Node ([loc], Id name, terms @ args_dom) ])) | Ast.Appl terms -> List.fold_right (fun term acc -> domain_of_term ~loc ~context term @ acc) terms [] | Ast.Binder (kind, (var, typ), body) -> let type_dom = domain_of_term_option ~loc ~context typ in let body_dom = domain_of_term ~loc ~context:(CicNotationUtil.cic_name_of_name var :: context) body in (match kind with | `Exists -> [ Node ([loc], Symbol ("exists", 0), (type_dom @ body_dom)) ] | _ -> type_dom @ body_dom) | Ast.Case (term, indty_ident, outtype, branches) -> let term_dom = domain_of_term ~loc ~context term in let outtype_dom = domain_of_term_option ~loc ~context outtype in let get_first_constructor = function | [] -> [] | ((head, _, _), _) :: _ -> [ Node ([loc], Id head, []) ] in let do_branch ((head, _, args), term) = let (term_context, args_domain) = List.fold_left (fun (cont, dom) (name, typ) -> (CicNotationUtil.cic_name_of_name name :: cont, (match typ with | None -> dom | Some typ -> dom @ domain_of_term ~loc ~context:cont typ))) (context, []) args in domain_of_term ~loc ~context:term_context term @ args_domain in let branches_dom = List.fold_left (fun dom branch -> dom @ do_branch branch) [] branches in (match indty_ident with | None -> get_first_constructor branches | Some (ident, _) -> [ Node ([loc], Id ident, []) ]) @ term_dom @ outtype_dom @ branches_dom | Ast.Cast (term, ty) -> let term_dom = domain_of_term ~loc ~context term in let ty_dom = domain_of_term ~loc ~context ty in term_dom @ ty_dom | Ast.LetIn ((var, typ), body, where) -> let body_dom = domain_of_term ~loc ~context body in let type_dom = domain_of_term_option ~loc ~context typ in let where_dom = domain_of_term ~loc ~context:(CicNotationUtil.cic_name_of_name var :: context) where in body_dom @ type_dom @ where_dom | Ast.LetRec (kind, defs, where) -> let add_defs context = List.fold_left (fun acc (_, (var, _), _, _) -> CicNotationUtil.cic_name_of_name var :: acc ) context defs in let where_dom = domain_of_term ~loc ~context:(add_defs context) where in let defs_dom = List.fold_left (fun dom (params, (_, typ), body, _) -> let context' = add_defs (List.fold_left (fun acc (var,_) -> CicNotationUtil.cic_name_of_name var :: acc) context params) in List.rev (snd (List.fold_left (fun (context,res) (var,ty) -> CicNotationUtil.cic_name_of_name var :: context, domain_of_term_option ~loc ~context ty @ res) (add_defs context,[]) params)) @ domain_of_term_option ~loc ~context typ @ domain_of_term ~loc ~context:context' body ) [] defs in defs_dom @ where_dom | Ast.Ident (name, subst) -> (try (* the next line can raise Not_found *) ignore(find_in_context name context); if subst <> None then Ast.fail loc "Explicit substitutions not allowed here" else [] with Not_found -> (match subst with | None -> [ Node ([loc], Id name, []) ] | Some subst -> let terms = List.fold_left (fun dom (_, term) -> let dom' = domain_of_term ~loc ~context term in dom @ dom') [] subst in [ Node ([loc], Id name, terms) ])) | Ast.Uri _ -> [] | Ast.Implicit -> [] | Ast.Num (num, i) -> [ Node ([loc], Num i, []) ] | Ast.Meta (index, local_context) -> List.fold_left (fun dom term -> dom @ domain_of_term_option ~loc ~context term) [] local_context | Ast.Sort _ -> [] | Ast.UserInput | Ast.Literal _ | Ast.Layout _ | Ast.Magic _ | Ast.Variable _ -> assert false and domain_of_term_option ~loc ~context = function | None -> [] | Some t -> domain_of_term ~loc ~context t let domain_of_term ~context term = uniq_domain (domain_of_term ~context term) let domain_of_obj ~context ast = assert (context = []); match ast with | Ast.Theorem (_,_,ty,bo) -> domain_of_term [] ty @ (match bo with None -> [] | Some bo -> domain_of_term [] bo) | Ast.Inductive (params,tyl) -> let context, dom = List.fold_left (fun (context, dom) (var, ty) -> let context' = CicNotationUtil.cic_name_of_name var :: context in match ty with None -> context', dom | Some ty -> context', dom @ domain_of_term context ty ) ([], []) params in let context_w_types = List.rev_map (fun (var, _, _, _) -> Cic.Name var) tyl @ context in dom @ List.flatten ( List.map (fun (_,_,ty,cl) -> domain_of_term context ty @ List.flatten ( List.map (fun (_,ty) -> domain_of_term context_w_types ty) cl)) tyl) | CicNotationPt.Record (params,var,ty,fields) -> let context, dom = List.fold_left (fun (context, dom) (var, ty) -> let context' = CicNotationUtil.cic_name_of_name var :: context in match ty with None -> context', dom | Some ty -> context', dom @ domain_of_term context ty ) ([], []) params in let context_w_types = Cic.Name var :: context in dom @ domain_of_term context ty @ snd (List.fold_left (fun (context,res) (name,ty,_,_) -> Cic.Name name::context, res @ domain_of_term context ty ) (context_w_types,[]) fields) let domain_of_obj ~context obj = uniq_domain (domain_of_obj ~context obj) (* dom1 \ dom2 *) let domain_diff dom1 dom2 = (* let domain_diff = Domain.diff *) let is_in_dom2 elt = List.exists (function | Symbol (symb, 0) -> (match elt with Symbol (symb',_) when symb = symb' -> true | _ -> false) | Num i -> (match elt with Num _ -> true | _ -> false) | item -> elt = item ) dom2 in let rec aux = function [] -> [] | Node (_,elt,l)::tl when is_in_dom2 elt -> aux (l @ tl) | Node (loc,elt,l)::tl -> Node (loc,elt,aux l)::(aux tl) in aux dom1 module type Disambiguator = sig val disambiguate_term : ?fresh_instances:bool -> dbd:HMysql.dbd -> context:Cic.context -> metasenv:Cic.metasenv -> ?initial_ugraph:CicUniv.universe_graph -> aliases:DisambiguateTypes.environment ->(* previous interpretation status *) universe:DisambiguateTypes.multiple_environment option -> CicNotationPt.term disambiguator_input -> ((DisambiguateTypes.domain_item * DisambiguateTypes.codomain_item) list * Cic.metasenv * (* new metasenv *) Cic.term* CicUniv.universe_graph) list * (* disambiguated term *) bool val disambiguate_obj : ?fresh_instances:bool -> dbd:HMysql.dbd -> aliases:DisambiguateTypes.environment ->(* previous interpretation status *) universe:DisambiguateTypes.multiple_environment option -> uri:UriManager.uri option -> (* required only for inductive types *) CicNotationPt.obj disambiguator_input -> ((DisambiguateTypes.domain_item * DisambiguateTypes.codomain_item) list * Cic.metasenv * (* new metasenv *) Cic.obj * CicUniv.universe_graph) list * (* disambiguated obj *) bool end module Make (C: Callbacks) = struct let choices_of_id dbd id = let uris = Whelp.locate ~dbd id in let uris = match uris with | [] -> (match (C.input_or_locate_uri ~title:("URI matching \"" ^ id ^ "\" unknown.") ~id ()) with | None -> [] | Some uri -> [uri]) | [uri] -> [uri] | _ -> C.interactive_user_uri_choice ~selection_mode:`MULTIPLE ~ok:"Try selected." ~enable_button_for_non_vars:true ~title:"Ambiguous input." ~id ~msg: ("Ambiguous input \"" ^ id ^ "\". Please, choose one or more interpretations:") uris in List.map (fun uri -> (UriManager.string_of_uri uri, let term = try CicUtil.term_of_uri uri with exn -> debug_print (lazy (UriManager.string_of_uri uri)); debug_print (lazy (Printexc.to_string exn)); assert false in fun _ _ _ -> term)) uris let refine_profiler = HExtlib.profile "disambiguate_thing.refine_thing" let disambiguate_thing ~dbd ~context ~metasenv ?(initial_ugraph = CicUniv.empty_ugraph) ~aliases ~universe ~uri ~pp_thing ~domain_of_thing ~interpretate_thing ~refine_thing (thing_txt,thing_txt_prefix_len,thing) = debug_print (lazy "DISAMBIGUATE INPUT"); let disambiguate_context = (* cic context -> disambiguate context *) List.map (function None -> Cic.Anonymous | Some (name, _) -> name) context in debug_print (lazy ("TERM IS: " ^ (pp_thing thing))); let thing_dom = domain_of_thing ~context:disambiguate_context thing in debug_print (lazy (sprintf "DISAMBIGUATION DOMAIN: %s"(string_of_domain thing_dom))); (* debug_print (lazy (sprintf "DISAMBIGUATION ENVIRONMENT: %s" (DisambiguatePp.pp_environment aliases))); debug_print (lazy (sprintf "DISAMBIGUATION UNIVERSE: %s" (match universe with None -> "None" | Some _ -> "Some _"))); *) let current_dom = Environment.fold (fun item _ dom -> item :: dom) aliases [] in let todo_dom = domain_diff thing_dom current_dom in debug_print (lazy (sprintf "DISAMBIGUATION DOMAIN AFTER DIFF: %s"(string_of_domain todo_dom))); (* (2) lookup function for any item (Id/Symbol/Num) *) let lookup_choices = fun item -> let choices = let lookup_in_library () = match item with | Id id -> choices_of_id dbd id | Symbol (symb, _) -> (try List.map DisambiguateChoices.mk_choice (TermAcicContent.lookup_interpretations symb) with TermAcicContent.Interpretation_not_found -> []) | Num instance -> DisambiguateChoices.lookup_num_choices () in match universe with | None -> lookup_in_library () | Some e -> (try let item = match item with | Symbol (symb, _) -> Symbol (symb, 0) | item -> item in Environment.find item e with Not_found -> lookup_in_library ()) in choices in (* (* *) let _ = if benchmark then begin let per_item_choices = List.map (fun dom_item -> try let len = List.length (lookup_choices dom_item) in debug_print (lazy (sprintf "BENCHMARK %s: %d" (string_of_domain_item dom_item) len)); len with No_choices _ -> 0) thing_dom in max_refinements := List.fold_left ( * ) 1 per_item_choices; actual_refinements := 0; domain_size := List.length thing_dom; choices_avg := (float_of_int !max_refinements) ** (1. /. float_of_int !domain_size) end in (* *) *) (* (3) test an interpretation filling with meta uninterpreted identifiers *) let test_env aliases todo_dom ugraph = let rec aux env = function | [] -> env | Node (_, item, l) :: tl -> let env = Environment.add item ("Implicit", (match item with | Id _ | Num _ -> (fun _ _ _ -> Cic.Implicit (Some `Closed)) | Symbol _ -> (fun _ _ _ -> Cic.Implicit None))) env in aux (aux env l) tl in let filled_env = aux aliases todo_dom in try let localization_tbl = Cic.CicHash.create 503 in let cic_thing = interpretate_thing ~context:disambiguate_context ~env:filled_env ~uri ~is_path:false thing ~localization_tbl in let foo () = let k,ugraph1 = refine_thing metasenv context uri cic_thing ugraph ~localization_tbl in (k , ugraph1 ) in refine_profiler.HExtlib.profile foo () with | Try_again msg -> Uncertain (None,msg), ugraph | Invalid_choice msg -> Ko (None,msg), ugraph in (* (4) build all possible interpretations *) let (@@) (l1,l2,l3) (l1',l2',l3') = l1@l1', l2@l2', l3@l3' in (* aux returns triples Ok/Uncertain/Ko *) (* rem_dom is the concatenation of all the remainin domains *) let rec aux aliases diff lookup_in_todo_dom todo_dom rem_dom base_univ = debug_print (lazy ("ZZZ: " ^ string_of_domain todo_dom)); match todo_dom with | [] -> assert (lookup_in_todo_dom = None); (match test_env aliases rem_dom base_univ with | Ok (thing, metasenv),new_univ -> [ aliases, diff, metasenv, thing, new_univ ], [], [] | Ko (loc,msg),_ -> [],[],[aliases,diff,loc,msg,true] | Uncertain (loc,msg),new_univ -> [],[aliases,diff,loc,msg,new_univ],[]) | Node (locs,item,inner_dom) :: remaining_dom -> debug_print (lazy (sprintf "CHOOSED ITEM: %s" (string_of_domain_item item))); let choices = match lookup_in_todo_dom with None -> lookup_choices item | Some choices -> choices in match choices with [] -> [], [], [aliases, diff, Some (List.hd locs), lazy ("No choices for " ^ string_of_domain_item item), true] (* | [codomain_item] -> (* just one choice. We perform a one-step look-up and if the next set of choices is also a singleton we skip this refinement step *) debug_print(lazy (sprintf "%s CHOSEN" (fst codomain_item))); let new_env = Environment.add item codomain_item aliases in let new_diff = (item,codomain_item)::diff in let lookup_in_todo_dom,next_choice_is_single = match remaining_dom with [] -> None,false | (_,he)::_ -> let choices = lookup_choices he in Some choices,List.length choices = 1 in if next_choice_is_single then aux new_env new_diff lookup_in_todo_dom remaining_dom base_univ else (match test_env new_env remaining_dom base_univ with | Ok (thing, metasenv),new_univ -> (match remaining_dom with | [] -> [ new_env, new_diff, metasenv, thing, new_univ ], [] | _ -> aux new_env new_diff lookup_in_todo_dom remaining_dom new_univ) | Uncertain (loc,msg),new_univ -> (match remaining_dom with | [] -> [], [new_env,new_diff,loc,msg,true] | _ -> aux new_env new_diff lookup_in_todo_dom remaining_dom new_univ) | Ko (loc,msg),_ -> [], [new_env,new_diff,loc,msg,true]) *) | _::_ -> let mark_not_significant failures = List.map (fun (env, diff, loc, msg, _b) -> env, diff, loc, msg, false) failures in let classify_errors ((ok_l,uncertain_l,error_l) as outcome) = if ok_l <> [] || uncertain_l <> [] then ok_l,uncertain_l,mark_not_significant error_l else outcome in let rec filter univ = function | [] -> [],[],[] | codomain_item :: tl -> debug_print(lazy (sprintf "%s CHOSEN" (fst codomain_item))); let new_env = Environment.add item codomain_item aliases in let new_diff = (item,codomain_item)::diff in (match test_env new_env (inner_dom@remaining_dom@rem_dom) univ with | Ok (thing, metasenv),new_univ -> let res = (match inner_dom with | [] -> [new_env,new_diff,metasenv,thing,new_univ], [], [] | _ -> aux new_env new_diff None inner_dom (remaining_dom@rem_dom) new_univ ) in res @@ filter univ tl | Uncertain (loc,msg),new_univ -> let res = (match inner_dom with | [] -> [],[new_env,new_diff,loc,msg,new_univ],[] | _ -> aux new_env new_diff None inner_dom (remaining_dom@rem_dom) new_univ ) in res @@ filter univ tl | Ko (loc,msg),_ -> let res = [],[],[new_env,new_diff,loc,msg,true] in res @@ filter univ tl) in let ok_l,uncertain_l,error_l = classify_errors (filter base_univ choices) in let res_after_ok_l = List.fold_right (fun (env,diff,_,_,univ) res -> aux env diff None remaining_dom rem_dom univ @@ res ) ok_l ([],[],error_l) in List.fold_right (fun (env,diff,_,_,univ) res -> aux env diff None remaining_dom rem_dom univ @@ res ) uncertain_l res_after_ok_l in let aux' aliases diff lookup_in_todo_dom todo_dom base_univ = match test_env aliases todo_dom base_univ with | Ok _,_ | Uncertain _,_ -> aux aliases diff lookup_in_todo_dom todo_dom [] base_univ | Ko (loc,msg),_ -> [],[],[aliases,diff,loc,msg,true] in let base_univ = initial_ugraph in try let res = match aux' aliases [] None todo_dom base_univ with | [],uncertain,errors -> let errors = List.map (fun (env,diff,loc,msg,_) -> (env,diff,loc,msg,true) ) uncertain @ errors in let errors = List.map (fun (env,diff,loc,msg,significant) -> let env' = filter_map_domain (fun locs domain_item -> try let description = fst (Environment.find domain_item env) in Some (locs,descr_of_domain_item domain_item,description) with Not_found -> None) thing_dom in env',diff,loc,msg,significant ) errors in raise (NoWellTypedInterpretation (0,errors)) | [_,diff,metasenv,t,ugraph],_,_ -> debug_print (lazy "SINGLE INTERPRETATION"); [diff,metasenv,t,ugraph], false | l,_,_ -> debug_print (lazy (sprintf "MANY INTERPRETATIONS (%d)" (List.length l))); let choices = List.map (fun (env, _, _, _, _) -> map_domain (fun locs domain_item -> let description = fst (Environment.find domain_item env) in locs,descr_of_domain_item domain_item, description) thing_dom) l in let choosed = C.interactive_interpretation_choice thing_txt thing_txt_prefix_len choices in (List.map (fun n->let _,d,m,t,u= List.nth l n in d,m,t,u) choosed), true in res with CicEnvironment.CircularDependency s -> failwith "Disambiguate: circular dependency" let disambiguate_term ?(fresh_instances=false) ~dbd ~context ~metasenv ?(initial_ugraph = CicUniv.empty_ugraph) ~aliases ~universe (text,prefix_len,term) = let term = if fresh_instances then CicNotationUtil.freshen_term term else term in disambiguate_thing ~dbd ~context ~metasenv ~initial_ugraph ~aliases ~universe ~uri:None ~pp_thing:CicNotationPp.pp_term ~domain_of_thing:domain_of_term ~interpretate_thing:interpretate_term ~refine_thing:refine_term (text,prefix_len,term) let disambiguate_obj ?(fresh_instances=false) ~dbd ~aliases ~universe ~uri (text,prefix_len,obj) = let obj = if fresh_instances then CicNotationUtil.freshen_obj obj else obj in disambiguate_thing ~dbd ~context:[] ~metasenv:[] ~aliases ~universe ~uri ~pp_thing:CicNotationPp.pp_obj ~domain_of_thing:domain_of_obj ~interpretate_thing:interpretate_obj ~refine_thing:refine_obj (text,prefix_len,obj) end